Interpretation of the corotation effect of polar conic current sheets and their source at the Sun

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the epochs of the solar activity minima, the high-latitude heliosphere is dominated by the flow of fast solar wind proceeding from polar coronal holes. Polar conic current sheets (CCS) can form within this flow as cone-shaped surfaces bounded by large-scale current sheets. These conic current sheets extend from the source in a polar coronal hole to distances of several astronomical units from the Sun, where they were detected using the Ulysses data for 1994 and 2007. One of unresolved issues is the observed effect of partial corotation of the conic current sheets and the Sun, whereby the axis of symmetry of the conic current sheets rotates around the solar rotation axis at a frequency close to the Carrington rotation rate. In this paper, we propose a three-dimensional kinematic non-stationary model of plasma propagation in the region of the conic current sheets. The model explains the effect of partial corotation as a result of the superposition of radial solar wind streams from a non-uniform source that rotates synchronously with the Sun. Based on the analysis of Ulysses data and the new model, we show that the motion of the conic current sheets as a whole differs from the motion of plasma within them, and both have a collective nature. As the conic current sheets rotate, they form spiral-wound cones. This explains the observation of conic current sheets at different heliolatitudes.

About the authors

R. A. Kislov

Pushkov institute of terrestrial magnetism, ionosphere and radio wave propagation of the Russian academy of sciences (IZMIRAN)

Email: kr-rk@bk.ru
Moscow, Troitsk, Russia

References

  1. Бескин В.С. Осесимметричные стационарные течения в астрофизике. М.: ФИЗМАТЛИТ, 384 с. 2006. ISBN 5-9221-0646-5.
  2. Кислов Р.А. МГД – модель высокоширотного токового слоя в гелиосфере // Ученые записки физического факультета Московского Университета. № 4. Статья 1740704. 2017.
  3. Кислов Р.А., Кузнецов В.Д. Пространственная эволюция и структура высокоскоростных потоков солнечного ветра из корональных дыр // Геомагнетизм и аэрономия. Т. 62. № 6. С. 683–692. 2022. https://doi.org/10.31857/S0016794022060074
  4. Пергамент М.И. Методы исследований в экспериментальной физике. Долгопрудный: Интеллект, 300 с. 2010.
  5. Хабарова О.В., Обридко В.Н., Кислов Р.А., Малова Х.В., Бемпорад А., Зелёный Л.М., Кузнецов В.Д., Харшиладзе А.Ф. Эволюция скорости солнечного ветра с расстоянием от Солнца в зависимости от фазы цикла. Сюрпризы от Ulysses и неожиданности по данным наблюдений короны // Физика плазмы. Т. 44. № 9. С. 752–766. 2018. https://doi.org/10.1134/S0367292118090068
  6. Barnes C.W., Simpson J.A. Evidence for interplanetary acceleration of nucleons in corotating interaction regions // Astrophys. J. V. 210. P. L91–L96. 1976. https://doi.org/10.1086/182311
  7. Burger R.A., Krüger T.P.J., Hitge M., Engelbrecht N.E. A Fisk-Parker hybrid heliospheric magnetic field with a solar-cycle dependence // Astrophys. J. V. 674. № 1. P. 511–519. 2008. https://doi.org/10.1086/525039
  8. Burlaga L.F. Corotating pressure waves without fast streams in the solar wind // J. Geophys. Res. – Space. V. 88. № 8. P. 6085–6094. 1983. https://doi.org/10.1029/JA088iA08p06085
  9. Burlaga L.F., Klein L.W. Configurations of corotating shocks in the outer heliosphere // J. Geophys. Res. – Space. V. 91. № 8. P. 8975–8980. 1986. https://doi.org/10.1029/JA091iA08p08975
  10. Chhiber R., Usmanov A.V., Matthaeus W.H., Goldstein M.L. Contextual predictions for the Parker Solar Probe. I. Critical surfaces and regions // Astrophys. J. V. 241. № 1. ID 11. 2019. https://doi.org/10.3847/1538-4365/ab0652
  11. Chhiber R., Pecora F., Usmanov A.V., Matthaeus W.H., Goldstein M.L., Roy S., Wang J., Thepthong P., Ruffolo D. The Alfven transition zone observed by the Parker Solar Probe in young solar wind – global properties and model comparisons // Mon. Not. R. Astron. Soc. V. 533. № 1. P. L70–L75. 2024. https://doi.org/10.1093/mnrasl/slae051
  12. Cranmer S.R., Chhiber R., Gilly C.R., Cairns I.H., Colaninno R.C., McComas D.J., Raouafi N.E., Usmanov A.V., Gibson S.E., DeForest C.E. The Sun’s Alfven surface: Recent insights and prospects for the Polarimeter to Unify the Corona and Heliosphere (PUNCH) // Sol. Phys. V. 298. № 11. ID 126. 2023. https://doi.org/10.1007/s11207-023-02218-2
  13. Dennison P., Hewish A. The solar wind outside the plane of the ecliptic // Nature. V. 213. № 5074. P. 343–346. 1967. https://doi.org/10.1038/213343a0
  14. Engelbrecht N.E., Mohlolo S.T., Ferreira S.E.S. An improved treatment of neutral sheet drift in the inner heliosphere // Astrophys. J. Lett. V. 884. № 2. ID L54. 2019. doi: 10.3847/2041-8213/ab4ad6
  15. Fahr H.-J., Fichtner H. Physical reasons and consequences of a three-dimensionally structured heliosphere // Space Sci. Rev. V. 58. № 1. P. 193–258. 1991. https://doi.org/10.1007/BF01206002
  16. Fisk L.A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes // J. Geophys. Res. – Space. V. 101. № 7. P. 15547–15553. 1996. https://doi.org/10.1029/96JA01005
  17. Hartman C., Benes B. Autonomous voids // Comput. Animal. Virt. W. V. 17. № 3–4. P. 199–206. 2006. https://doi.org/10.1002/cav.123
  18. Khabarova O.V., Malova H.V., Kislov R.A., Zelenyi L.M., Obridko V.N., Kharzhidade A.F., Tokumaru M., Sokół J.M., Grzedzielski S., Fujiki K. High-latitude conic current sheets in the solar wind // Astrophys. J. V. 836. № 1. ID 108. 2017. https://doi.org/10.3847/1538-4357/836/1/108
  19. Khabarova O., Zharkova V., Xia Q., Malandraki O. Counterstreaming strains and heat flux dropouts as possible signatures of local particle acceleration in the solar wind // Astrophys. J. Lett. V. 894. № 1. ID L12. 2020. https://doi.org/10.3847/2041-8213/ab86b8
  20. Khabarova O., Malandraki O., Malova H., Kislov R., Greco A., Bruno R., Pezzi O., Servidio S., Li G., Matthaeus W., Le Roux J., Engelbrecht N.E., Pecora F., Zelenyi L., Obridko V., Kuznetsov V. Current sheets, plasmoids and flux ropes in the heliosphere. Part I. 2-D or not 2-D? General and observational aspects // Space Sci. Rev. V. 217. № 3. ID 38. 2021a. https://doi.org/10.1007/s11214-021-00814-x
  21. Khabarova O., Sagitov T., Kislov R., Li G. Automated identification of current sheets – a new tool to study turbulence and intermittency in the solar wind // J. Geophys. Res. – Space. V. 126. № 8. 2021b. https://doi.org/10.1029/2020JA029099
  22. Kislov R.A., Khabarova O.V., Malova H.V. A new stationary analytical model of the heliospheric current sheet and the plasma sheet // J. Geophys. Res. – Space. V. 120. № 10. P.8210–8228.2015.https://doi.org/10.1002/2015JA021294
  23. Kislov R.A., Khabarova O.V., Malova H.V. Quasi-stationary current sheets of the solar origin in the heliosphere // Astrophys. J. V. 875. № 1. ID 28. 2019. https://doi.org/10.3847/1538-4357/ab0dff
  24. Kislov R.A. The stationary electric field in the heliosphere and its possible relation to current sheets // Universe. V. 8. № 3. ID 152. 2022. https://doi.org/10.3390/universe8030152
  25. Kislov R.A. Internal structure of the magnetic funnel in the polar heliosphere // Solar Syst. Res. V. 58. Suppl. 1. P. S105-S114. 2024. https://doi.org/10.1134/S003809462460104X
  26. Krieger A.S., Timothy A.F., Roelof E.C. A coronal hole and its identification as the source of a high velocity solar wind stream // Sol. Phys. V. 29. № 2. P. 505–525. 1973. https://doi.org/10.1007/BF00150828
  27. Levine R.H., Schulz M., Frazier E.N. Simulation of the magnetic structure of the inner heliosphere by means of a non-spherical source surface // Sol. Phys. V. 77. № 1–2. P. 363–392. 1982. https://doi.org/10.1007/BF00156118
  28. Lin C.C., Shu F.H. On the spiral structure of the disk galaxies // Astrophys. J. V. 140. № 2. P. 646–655. 1964. https://doi.org/10.1086/147955
  29. Maiewski E.V., Kislov R.A., Khabarova O.V., Malova H.V., Popov V.Yu., Petrukovich A.A., Zelenyi L.M. Magnetohydrodynamic modeling of the solar wind key parameters and current sheets in the heliosphere: radial and solar cycle evolution // Astrophys. J. V. 892. № 1. ID 12. 2020. https://doi.org/10.3847/1538-4357/ab712c
  30. Newell G.F. A simplified theory of kinematic waves in highway traffic, part I: General theory // Transport. Res. B – Meth. V. 27. № 4. P. 281–287. 1993. https://doi.org/10.1016/0191-2615(93)90038-C
  31. Obridko V., Fomichev V., Kharshiladze A.F., Zhitnik I., Slemzin V., Hathaway D., Wu S.T. Analyses and modelling of coronal holes observed by CORONAS-I. I. Morphology and magnetic field configuration // Astronomical & Astrophysical Transactions. V. 18. № 6. P. 819–828. 2000. https://doi.org/10.1080/10556790008208176
  32. Obridko V.N., Shelting B.D. Relationship between the parameters of coronal holes and high-speed solar wind streams over an activity cycle // Sol. Phys. V. 270. № 1. P. 297–310. 2011. https://doi.org/10.1007/s11207-011-9753-2
  33. Obridko V.N., Sokoloff D.D., Shelting B.D., Shibalova A.S., Livshits I.M. Cyclic variations in the main components of the solar large-scale magnetic field // Mon. Not. R. Astron. Soc. V. 492. № 4. P. 5582–5591. 2020 https://doi.org/10.1093/mnras/staa147
  34. Parker E.N. Dynamics of the interplanetary gas and magnetic fields // Astrophys. J. Lett. V. 128. P. 664–676. 1958. https://doi.org/10.1086/146579
  35. Phillips J.L., Bame S.J., Feldman W.C., Goldstein B.E., Gosling J.T., Hammond C.M., McComas D.J., Neugebauer M., Scime E.E., Suess S.T. Ulysses solar wind plasma observations at high southerly latitudes // Science. V. 268. № 5213. P. 1030–1033. 1995. https://doi.org/10.1126/science.268.5213.1030
  36. Pizzo V., Millward G., Parsons A., Biesecker D., Hill S., Odstrcil D. Wang-Sheeley-Arge-Enlilconvections to operations // Space Weather. V. 9. № 3. ID S03004. 2011. https://doi.org/10.1029/2011SW000663
  37. Pneuman G.W., Kopp R.A. Gas-magnetic field interactions in the solar corona // Sol. Phys. V. 18. № 2. P. 258–270. 1971. https://doi.org/10.1007/BF00145940
  38. Russell C.T., Luhmann J.G., Strangeway R.J. Space Physics: An Introduction. Cambridge, UK: Cambridge University Press, 512 pp. 2016. ISBN 9781107098824.
  39. Smith E.J., Neugebauer M., Balogh A., Bame S.J., Erdos G., Forsyth R.J., Goldstein B.E., Phillips J.L., Tsurutani B.T. Disappearance of the heliospheric sector structure at Ulysses // Geophys. Res. Lett. V. 20. № 21. P. 2327–2330. 1993. https://doi.org/10.1029/93GL02632
  40. Smith E.J. The heliospheric current sheet // J. Geophys. Res. – Space. V. 106. № 8. P. 15819–15831. 2001. https://doi.org/10.1029/2000JA000120
  41. Tokumaru M., Kojima M., Fujiki K. Solar cycle evolution of the solar wind speed distribution from 1985 to 2008 // J. Geophys. Res. – Space. V. 115. № 4. ID A04102. 2010. https://doi.org/10.1029/2009JA014628
  42. Wang Y.-M. Solar cycle variation of the Sun’s low-order magnetic multipoles: heliospheric consequences // Space Sci. Rev. V. 186. № 1–4. P. 387–407. 2014. https://doi.org/10.1007/s11214-014-0051-9
  43. Wang Y.-M., Sheeley N.R. Predicting the solar wind speed and interplanetary sector structure during solar cycles 21–25 // Astrophys. J. V. 985. № 1. ID 54. 2025. https://doi.org/10.3847/1538-4357/adebaa
  44. Wilcox J.M., Ness N.F. Quasi-stationary corotating structure in the interplanetary medium // J. Geophys. Res. V. 70. № 23. P. 5793–5805. 1965. https://doi.org/10.1029/JZ070i023p05793
  45. Winterhalter D., Smith E.J., Burton M.E., Murphy N., McComas D.J. The heliospheric plasma sheet // J. Geophys. Res. – Space. V. 99. № 4. P. 6667–6680. 1994. https://doi.org/10.1029/93JA03481
  46. Zank G.P., le Roux J.A., Webb G.M., Dosch A., Khabarova O. Particle acceleration via reconnection processes in the supersonic solar wind // Astrophys. J. V. 797. № 1. ID 28. 2014. https://doi.org/10.1088/0004-637X/797/1/28
  47. Zharkova V.V., Khabarova O.V. Particle dynamics in the reconnecting heliospheric current sheet: solar wind data versus three-dimensional particle-in-cell simulations // Astrophys. J. V. 752. № 1. ID 35. 2012. https://doi.org/10.1088/0004-637X/752/1/35

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).