Interpretation of the corotation effect of polar conic current sheets and their source at the Sun
- Authors: Kislov R.A.1
-
Affiliations:
- Pushkov institute of terrestrial magnetism, ionosphere and radio wave propagation of the Russian academy of sciences (IZMIRAN)
- Issue: Vol 65, No 6 (2025)
- Pages: 755-768
- Section: Articles
- URL: https://ogarev-online.ru/0016-7940/article/view/375956
- DOI: https://doi.org/10.7868/S3034502225060016
- ID: 375956
Cite item
Abstract
In the epochs of the solar activity minima, the high-latitude heliosphere is dominated by the flow of fast solar wind proceeding from polar coronal holes. Polar conic current sheets (CCS) can form within this flow as cone-shaped surfaces bounded by large-scale current sheets. These conic current sheets extend from the source in a polar coronal hole to distances of several astronomical units from the Sun, where they were detected using the Ulysses data for 1994 and 2007. One of unresolved issues is the observed effect of partial corotation of the conic current sheets and the Sun, whereby the axis of symmetry of the conic current sheets rotates around the solar rotation axis at a frequency close to the Carrington rotation rate. In this paper, we propose a three-dimensional kinematic non-stationary model of plasma propagation in the region of the conic current sheets. The model explains the effect of partial corotation as a result of the superposition of radial solar wind streams from a non-uniform source that rotates synchronously with the Sun. Based on the analysis of Ulysses data and the new model, we show that the motion of the conic current sheets as a whole differs from the motion of plasma within them, and both have a collective nature. As the conic current sheets rotate, they form spiral-wound cones. This explains the observation of conic current sheets at different heliolatitudes.
About the authors
R. A. Kislov
Pushkov institute of terrestrial magnetism, ionosphere and radio wave propagation of the Russian academy of sciences (IZMIRAN)
Email: kr-rk@bk.ru
Moscow, Troitsk, Russia
References
- Бескин В.С. Осесимметричные стационарные течения в астрофизике. М.: ФИЗМАТЛИТ, 384 с. 2006. ISBN 5-9221-0646-5.
- Кислов Р.А. МГД – модель высокоширотного токового слоя в гелиосфере // Ученые записки физического факультета Московского Университета. № 4. Статья 1740704. 2017.
- Кислов Р.А., Кузнецов В.Д. Пространственная эволюция и структура высокоскоростных потоков солнечного ветра из корональных дыр // Геомагнетизм и аэрономия. Т. 62. № 6. С. 683–692. 2022. https://doi.org/10.31857/S0016794022060074
- Пергамент М.И. Методы исследований в экспериментальной физике. Долгопрудный: Интеллект, 300 с. 2010.
- Хабарова О.В., Обридко В.Н., Кислов Р.А., Малова Х.В., Бемпорад А., Зелёный Л.М., Кузнецов В.Д., Харшиладзе А.Ф. Эволюция скорости солнечного ветра с расстоянием от Солнца в зависимости от фазы цикла. Сюрпризы от Ulysses и неожиданности по данным наблюдений короны // Физика плазмы. Т. 44. № 9. С. 752–766. 2018. https://doi.org/10.1134/S0367292118090068
- Barnes C.W., Simpson J.A. Evidence for interplanetary acceleration of nucleons in corotating interaction regions // Astrophys. J. V. 210. P. L91–L96. 1976. https://doi.org/10.1086/182311
- Burger R.A., Krüger T.P.J., Hitge M., Engelbrecht N.E. A Fisk-Parker hybrid heliospheric magnetic field with a solar-cycle dependence // Astrophys. J. V. 674. № 1. P. 511–519. 2008. https://doi.org/10.1086/525039
- Burlaga L.F. Corotating pressure waves without fast streams in the solar wind // J. Geophys. Res. – Space. V. 88. № 8. P. 6085–6094. 1983. https://doi.org/10.1029/JA088iA08p06085
- Burlaga L.F., Klein L.W. Configurations of corotating shocks in the outer heliosphere // J. Geophys. Res. – Space. V. 91. № 8. P. 8975–8980. 1986. https://doi.org/10.1029/JA091iA08p08975
- Chhiber R., Usmanov A.V., Matthaeus W.H., Goldstein M.L. Contextual predictions for the Parker Solar Probe. I. Critical surfaces and regions // Astrophys. J. V. 241. № 1. ID 11. 2019. https://doi.org/10.3847/1538-4365/ab0652
- Chhiber R., Pecora F., Usmanov A.V., Matthaeus W.H., Goldstein M.L., Roy S., Wang J., Thepthong P., Ruffolo D. The Alfven transition zone observed by the Parker Solar Probe in young solar wind – global properties and model comparisons // Mon. Not. R. Astron. Soc. V. 533. № 1. P. L70–L75. 2024. https://doi.org/10.1093/mnrasl/slae051
- Cranmer S.R., Chhiber R., Gilly C.R., Cairns I.H., Colaninno R.C., McComas D.J., Raouafi N.E., Usmanov A.V., Gibson S.E., DeForest C.E. The Sun’s Alfven surface: Recent insights and prospects for the Polarimeter to Unify the Corona and Heliosphere (PUNCH) // Sol. Phys. V. 298. № 11. ID 126. 2023. https://doi.org/10.1007/s11207-023-02218-2
- Dennison P., Hewish A. The solar wind outside the plane of the ecliptic // Nature. V. 213. № 5074. P. 343–346. 1967. https://doi.org/10.1038/213343a0
- Engelbrecht N.E., Mohlolo S.T., Ferreira S.E.S. An improved treatment of neutral sheet drift in the inner heliosphere // Astrophys. J. Lett. V. 884. № 2. ID L54. 2019. doi: 10.3847/2041-8213/ab4ad6
- Fahr H.-J., Fichtner H. Physical reasons and consequences of a three-dimensionally structured heliosphere // Space Sci. Rev. V. 58. № 1. P. 193–258. 1991. https://doi.org/10.1007/BF01206002
- Fisk L.A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes // J. Geophys. Res. – Space. V. 101. № 7. P. 15547–15553. 1996. https://doi.org/10.1029/96JA01005
- Hartman C., Benes B. Autonomous voids // Comput. Animal. Virt. W. V. 17. № 3–4. P. 199–206. 2006. https://doi.org/10.1002/cav.123
- Khabarova O.V., Malova H.V., Kislov R.A., Zelenyi L.M., Obridko V.N., Kharzhidade A.F., Tokumaru M., Sokół J.M., Grzedzielski S., Fujiki K. High-latitude conic current sheets in the solar wind // Astrophys. J. V. 836. № 1. ID 108. 2017. https://doi.org/10.3847/1538-4357/836/1/108
- Khabarova O., Zharkova V., Xia Q., Malandraki O. Counterstreaming strains and heat flux dropouts as possible signatures of local particle acceleration in the solar wind // Astrophys. J. Lett. V. 894. № 1. ID L12. 2020. https://doi.org/10.3847/2041-8213/ab86b8
- Khabarova O., Malandraki O., Malova H., Kislov R., Greco A., Bruno R., Pezzi O., Servidio S., Li G., Matthaeus W., Le Roux J., Engelbrecht N.E., Pecora F., Zelenyi L., Obridko V., Kuznetsov V. Current sheets, plasmoids and flux ropes in the heliosphere. Part I. 2-D or not 2-D? General and observational aspects // Space Sci. Rev. V. 217. № 3. ID 38. 2021a. https://doi.org/10.1007/s11214-021-00814-x
- Khabarova O., Sagitov T., Kislov R., Li G. Automated identification of current sheets – a new tool to study turbulence and intermittency in the solar wind // J. Geophys. Res. – Space. V. 126. № 8. 2021b. https://doi.org/10.1029/2020JA029099
- Kislov R.A., Khabarova O.V., Malova H.V. A new stationary analytical model of the heliospheric current sheet and the plasma sheet // J. Geophys. Res. – Space. V. 120. № 10. P.8210–8228.2015.https://doi.org/10.1002/2015JA021294
- Kislov R.A., Khabarova O.V., Malova H.V. Quasi-stationary current sheets of the solar origin in the heliosphere // Astrophys. J. V. 875. № 1. ID 28. 2019. https://doi.org/10.3847/1538-4357/ab0dff
- Kislov R.A. The stationary electric field in the heliosphere and its possible relation to current sheets // Universe. V. 8. № 3. ID 152. 2022. https://doi.org/10.3390/universe8030152
- Kislov R.A. Internal structure of the magnetic funnel in the polar heliosphere // Solar Syst. Res. V. 58. Suppl. 1. P. S105-S114. 2024. https://doi.org/10.1134/S003809462460104X
- Krieger A.S., Timothy A.F., Roelof E.C. A coronal hole and its identification as the source of a high velocity solar wind stream // Sol. Phys. V. 29. № 2. P. 505–525. 1973. https://doi.org/10.1007/BF00150828
- Levine R.H., Schulz M., Frazier E.N. Simulation of the magnetic structure of the inner heliosphere by means of a non-spherical source surface // Sol. Phys. V. 77. № 1–2. P. 363–392. 1982. https://doi.org/10.1007/BF00156118
- Lin C.C., Shu F.H. On the spiral structure of the disk galaxies // Astrophys. J. V. 140. № 2. P. 646–655. 1964. https://doi.org/10.1086/147955
- Maiewski E.V., Kislov R.A., Khabarova O.V., Malova H.V., Popov V.Yu., Petrukovich A.A., Zelenyi L.M. Magnetohydrodynamic modeling of the solar wind key parameters and current sheets in the heliosphere: radial and solar cycle evolution // Astrophys. J. V. 892. № 1. ID 12. 2020. https://doi.org/10.3847/1538-4357/ab712c
- Newell G.F. A simplified theory of kinematic waves in highway traffic, part I: General theory // Transport. Res. B – Meth. V. 27. № 4. P. 281–287. 1993. https://doi.org/10.1016/0191-2615(93)90038-C
- Obridko V., Fomichev V., Kharshiladze A.F., Zhitnik I., Slemzin V., Hathaway D., Wu S.T. Analyses and modelling of coronal holes observed by CORONAS-I. I. Morphology and magnetic field configuration // Astronomical & Astrophysical Transactions. V. 18. № 6. P. 819–828. 2000. https://doi.org/10.1080/10556790008208176
- Obridko V.N., Shelting B.D. Relationship between the parameters of coronal holes and high-speed solar wind streams over an activity cycle // Sol. Phys. V. 270. № 1. P. 297–310. 2011. https://doi.org/10.1007/s11207-011-9753-2
- Obridko V.N., Sokoloff D.D., Shelting B.D., Shibalova A.S., Livshits I.M. Cyclic variations in the main components of the solar large-scale magnetic field // Mon. Not. R. Astron. Soc. V. 492. № 4. P. 5582–5591. 2020 https://doi.org/10.1093/mnras/staa147
- Parker E.N. Dynamics of the interplanetary gas and magnetic fields // Astrophys. J. Lett. V. 128. P. 664–676. 1958. https://doi.org/10.1086/146579
- Phillips J.L., Bame S.J., Feldman W.C., Goldstein B.E., Gosling J.T., Hammond C.M., McComas D.J., Neugebauer M., Scime E.E., Suess S.T. Ulysses solar wind plasma observations at high southerly latitudes // Science. V. 268. № 5213. P. 1030–1033. 1995. https://doi.org/10.1126/science.268.5213.1030
- Pizzo V., Millward G., Parsons A., Biesecker D., Hill S., Odstrcil D. Wang-Sheeley-Arge-Enlilconvections to operations // Space Weather. V. 9. № 3. ID S03004. 2011. https://doi.org/10.1029/2011SW000663
- Pneuman G.W., Kopp R.A. Gas-magnetic field interactions in the solar corona // Sol. Phys. V. 18. № 2. P. 258–270. 1971. https://doi.org/10.1007/BF00145940
- Russell C.T., Luhmann J.G., Strangeway R.J. Space Physics: An Introduction. Cambridge, UK: Cambridge University Press, 512 pp. 2016. ISBN 9781107098824.
- Smith E.J., Neugebauer M., Balogh A., Bame S.J., Erdos G., Forsyth R.J., Goldstein B.E., Phillips J.L., Tsurutani B.T. Disappearance of the heliospheric sector structure at Ulysses // Geophys. Res. Lett. V. 20. № 21. P. 2327–2330. 1993. https://doi.org/10.1029/93GL02632
- Smith E.J. The heliospheric current sheet // J. Geophys. Res. – Space. V. 106. № 8. P. 15819–15831. 2001. https://doi.org/10.1029/2000JA000120
- Tokumaru M., Kojima M., Fujiki K. Solar cycle evolution of the solar wind speed distribution from 1985 to 2008 // J. Geophys. Res. – Space. V. 115. № 4. ID A04102. 2010. https://doi.org/10.1029/2009JA014628
- Wang Y.-M. Solar cycle variation of the Sun’s low-order magnetic multipoles: heliospheric consequences // Space Sci. Rev. V. 186. № 1–4. P. 387–407. 2014. https://doi.org/10.1007/s11214-014-0051-9
- Wang Y.-M., Sheeley N.R. Predicting the solar wind speed and interplanetary sector structure during solar cycles 21–25 // Astrophys. J. V. 985. № 1. ID 54. 2025. https://doi.org/10.3847/1538-4357/adebaa
- Wilcox J.M., Ness N.F. Quasi-stationary corotating structure in the interplanetary medium // J. Geophys. Res. V. 70. № 23. P. 5793–5805. 1965. https://doi.org/10.1029/JZ070i023p05793
- Winterhalter D., Smith E.J., Burton M.E., Murphy N., McComas D.J. The heliospheric plasma sheet // J. Geophys. Res. – Space. V. 99. № 4. P. 6667–6680. 1994. https://doi.org/10.1029/93JA03481
- Zank G.P., le Roux J.A., Webb G.M., Dosch A., Khabarova O. Particle acceleration via reconnection processes in the supersonic solar wind // Astrophys. J. V. 797. № 1. ID 28. 2014. https://doi.org/10.1088/0004-637X/797/1/28
- Zharkova V.V., Khabarova O.V. Particle dynamics in the reconnecting heliospheric current sheet: solar wind data versus three-dimensional particle-in-cell simulations // Astrophys. J. V. 752. № 1. ID 35. 2012. https://doi.org/10.1088/0004-637X/752/1/35
Supplementary files


