Положение источника дневных высокоширотных магнитных импульсов в магнитосфере по данным спутников DMSP

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Дневные высокоширотные геофизические явления несут наземному наблюдателю информацию о процессах на дневной магнитопаузе и/или в примыкающих к ней магнитосферных доменах. Предполагается, что эти явления инициируются изменением параметров межпланетной среды и поэтому могут использоваться как инструмент для исследования способов проникновения энергии солнечного ветра через магнитопаузу. К таким явлениям относятся магнитные импульсы, представляющие собой изолированный цуг затухающих колебаний из 2−3 всплесков с периодом следования 8−12 минут. По данным скандинавской сети магнитометров IMAGE исследовано восемь событий магнитных импульсов, для которых спутники DMSP пролетали над областью наблюдений во время, незадолго до и сразу после импульса, пересекая при этом границы нескольких доменов. По наземным данным и данным спутников DMSP показано, что ассоциируемый с импульсами втекающий продольный ток располагается вдали от магнитопаузы. Это означает, что импульс не может рассматриваться как ионосферный след пересоединившейся силовой трубки (flux transfer event, FTE) и/или как travelling convection vortices, TCV. На бóльшей статистике установлено, что импульсу предшествуют заметные изменения By- и Bz-компонент ММП, в то время как вклад в генерацию магнитного импульса быстрого изменения давления и скорости солнечного ветра, а также Bx-компоненты ММП, не очевиден. Обсуждается возможный сценарий инициации магнитного импульса вариациями ММП.

Об авторах

В. В. Сафаргалеев

Санкт-Петербургский филиал института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (С-Пб ИЗМИРАН)

Автор, ответственный за переписку.
Email: Vladimir.safargaleev@pgia.ru
Россия, Санкт-Петербург

Список литературы

  1. Воробьев В.Г., Зверев В.Л. Старков Г.В. Геомагнитные импульсы в дневной высокоширотной области: основные морфологические характеристики и связь с динамикой дневных сияний // Геомагнетизм и аэрономия. Т. 33. 69−79. 1993.
  2. Воробьев В.Г., Зверев В.Л. Морфологические особенности перемещающихся токовых вихрей. // Геомагнетизм и аэрономия.Т. 35. № 5. С. 35−43. 1997
  3. Ляцкий В.Б., Мальцев Ю.П. Магнитосферно-ионосферное взаимодействие. М.: Наука, 192 с. 1983.
  4. Пилипенко В.А. Резонансные эффекты ультра-низкочастотных волновых полей в околоземном пространстве // Автореф. дис. док. физ.-мат. наук. М.: изд-во ИФЗ РАН, 33 с. 2006.
  5. Amm O., Engebretson M.J., Hughes T., Newitt L., Viljanen A., Watermann J. A traveling convection vortex event study: Instantaneous ionospheric equivalent currents, estimation of fieldaligned currents, and the role of induced currents // J. Geophys. Res. V. 107. 1334. 2002. https://doi.org/10.1029/2002JA009472.
  6. Beaujardiere O. de la, Watermann J., Newell P., Rich F. Relationship between Birkeland current regions, particle precipitation, and electric field // J. Geophys. Res. V. 98. P. 711−7720. 1993. https://doi.org/10.1029/92JA02005.
  7. Bering III E.A., Lanzerotti L.J., Benbrook J.R., Lin Z.-M. Solar wind properties observed during high-latitude impulsive perturbation events // Geophys. Res. Lett. V. 17. P. 579−582. 1990. https://doi.org/10.1029/GL017i005p00579.
  8. Clauer C.R., Ridley A.J., Sitar R.J., Singer H.J., Rodger A.S., Friis-Christensen E., Papitashvili V.O. Field line resonant pulsations associated with a strong dayside ionospheric shear convection flow reversal // J. Geophys. Res. V. 102. P. 4585 – 4596. 1997. https://doi.org/10.1029/96JA02929.
  9. Eastwood J.P., Sibeck D.G., Angelopoulos V., Phan T.D., Bale S.D., McFadden J.P., et al. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements // Geophys. Res. Lett. V. 35. № 17. 2008. https://doi.org/10.1029/2008GL033475.
  10. Friis-Christensen E., McHenry M.A., Clauer C.R., Vennerstrøm S. Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind // Geophys. Res. Lett. V. 15. P. 253–256. 1998. https://doi.org/10.1029/GL015i003p00253.
  11. Goertz C.K., Nielsen E., Korth A., Glassmeier K.H., Haldoupis C., Hoeg P., Hayward D. Observations of a possible ground signature of flux transfer events // J. Geophys. Res. V. 90. P. 4069–4078. 1985. https://doi.org/10.1029/JA090iA05p04069.
  12. Kim H., Lessard M.R., Jones S.L., et al. Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling // J. Geophys. Res. V. 122. P. 4943–4959. 2017. https://doi.org/10.1002/2017JA023904.
  13. Konik R.M., Lanzerotti L.J., Wolfe A., Maclennan C.G., Venkatesan D. Cusp latitude magnetic impulse events, 2, Interplanetary magnetic field and solar wind conditions // J. Geophys. Res. V. 99. P. 14831−14853. 1994. https://doi.org/10.1029/93JA03241.
  14. Lanzerotti L.J., Lee L.C., Maclennan C.G., Wolfe A., and Medford L.V. Possible evidence of flux transfer events in the polar ionosphere // Geophys. Res. Lett. 13. P. 1089−1092. 1986. https://doi.org/10.1029/GL013i011p01089.
  15. Leonovich A.S., Mazur V.A. Resonance excitation of standing Alfven waves in an axisymmetric magnetosphere (nonstationary oscillations) // Planet. Space Sci. V. 37. P. 1109–1116. 1989. https://doi.org/10.1016/0032-0633(89)90082-2.
  16. Leonovich A.S., Kozlov D.A. Focusing of fast magnetosonic waves in the dayside magnetosphere // J. Geophys. Res. V. 125. e2020JA027925. 2020. https://doi.org/ 10.1029/2020JA027925.
  17. Lin Y., Swift D.W., Lee L.C. Simulation of pressure pulses in the bow shock and magnetosheath driven by variations in interplanetary magnetic field direction // J. Geophys. Res. V. 101. P. 2725−27269. 1996. https://doi.org/10.1029/96JA02733.
  18. Lühr H., Lockwood M., Sandholt P.E., Hansen T.L., Moretto T. Multi-instrument ground-based observations of a travelling convection vortices event // Ann. Geophys. V. 1. P. 162−181. 1996. https://doi.org/10.1007/s00585-996-0162-z.
  19. Moretto T., Friis-Christensen E., Lühr H., Zesta E. Global perspective of ionospheric traveling convection vortices: Case studies of two Geospace Environmental Modeling events // J. Geophys. Res. V. 102. P. 11597–11610. 1997. https://doi.org/10.1029/97JA00324
  20. Moretto T., Sibeck D., Watermann J. Occurrence statistics of magnetic impulsive events // Annales Geophysicae. V. 22. P. 585−602. 2004. https://doi.org/10.5194/angeo-22-585-2004.
  21. Newell P.T., Wing S., Meng C-I., Sigilitto V. The auroral oval position, structure and intensity of precipitation from 1984 onward: an automated on-line base // J. Geophys. Res. V. 96. P. 5877−5882. 1991. https://doi.org/10.1029/90JA02450.
  22. Newell P.T., Meng C.-I. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics // Geophys. Res. Lett. V. 19. P. 609−612. 1992. https://doi.org/10.1029/92GL00404.
  23. Palin L., Opgenoorth H.J., Årgen J., et al. Modulation of the substorm current wedge by bursty bulk flows: 8 September 2002 – Revisited // J. Geophys. Res. V. 121. P. 4466–4482. 2016. https://doi.org/10.1002/2015JA022262.
  24. Pilipenko V.A., Engebretson M.J., Hartinger M.D, Fedorov E.N., Coyle S. Electromagnetic fields of magnetospheric disturbances in the conjugate ionospheres: Current/voltage dichotomy / Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System, ed. by T. Nishimura, O. Verkhoglyadova, and Y. Deng, Elsevier B.V. Amsterdam. 357-440. 2021. https://doi.org/10.1016/B978-0-12-821366-7.00005-6.
  25. Ridley A.J. Estimations of the uncertainty in timing the relationship between magnetospheric and solar wind processes // J. Atmos. Solar-Terr. Phys. V. 62. P. 757‒771. 2000. https://doi.org/10.1016/S1364-6826(00)00057-2.
  26. Safargaleev V., Kangas J., Kozlovsky A., Vasilyev A. Burst of ULF noise excited by sudden changes of solar wind dynamic pressure // Ann. Geophys. V. 20. P. 1751‒1761. 2002. https://doi.org/10.5194/angeo-20-1751-2002.
  27. Samsonov A.A., Nemeček Z., Šafránkova J. Numerical MHD modeling of propagation of interplanetary shock through the magnetosheath // J. Geophys. Res. V. 111. A08210. 2006. https://doi.org/10.1029/2005JA011537.
  28. Sibeck D.G. A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations // J. Geophys. Res. V. 95. P. 3755–3771.1990. https://doi.org/10.1029/JA095iA04p03755.
  29. Sibeck D.G. Transient events in the outer magnetosphere: Boundary waves or flux transfer events? // J. Geophys. Res. V. 97. 4009–4026. 1992. https://doi.org/10.1029/91JA03017
  30. Sibeck D.G., Trivedi N.B., Zesta E., Decker R.B, Singer H.J., Szabo A., Tachihara H., Watermann J. Pressure pulse interaction with the magnetosphere and ionosphere // J. Geophys. Res. V. 108. 1095. 2003. https://doi.org/10.1029/2002JA009675.
  31. Vorobjev V.G., Yagodkina O.I., and Zverev V.L. Morphological features of bipolar magnetic impulsive events and associated interplanetary medium signatures. // J. Geophys. Res. V. 104. P. 4595−4608. 1999. https://doi.org/10.1029/1998JA900042.
  32. Yahnin A., Titova E., Lubchich A., Bösinger T., Manninen J., Turunen T., Hansen T., Troshichev O., Kotikov A. Dayside high latitude magnetic impulsive events: their characteristics and relationship to sudden impulses // J. Atmos. Solar-Terr. Phys. V. 57. P. 1569–1582. 1995. https://doi.org/10.1016/0021-9169(95)00090-O.
  33. Yahnin A.G., Vorobjev V.G., Bösinger T., Rasinkangas R., Sibeck D.G., Newell P.T. On the source region of traveling convection vortices // Geophys. Res. Lett. V. 24. P. 237–240. 1997. https://doi.org/10.1029/96GL03969.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».