The sequence and mechanisms of crystallization of precious metal minerals in veins of graphic galena-chalcopyrite ores in the central part of Oktyabr’sky Cu-Ni-PGE deposits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents original results of studying platinum group minerals (PGM) in graphic galena-chalcopyrite ores of the central part of the Oktyabr’sky Cu-Ni-PGE deposit. Three successive mechanisms of PGE aggregate formation are proposed: growth from melt, subsolidus transformations and metasomatic processes. They can be divided into 7 stages: (1) accumulation of a critical amount of PGE and TABS in the residual (Cu-Pb-sulfide) melt due to fractional crystallization of sulfide melt; (2) crystallization of graphic intergrowths with distillation and concentration of incompatible elements in the form of "drops" along the sulfide-silicate boundary; (3) crystallization of platinum group minerals from this melt: sperrylite, altaite, cabriite-I, paolovite-I and hessite-containing solid solution (hessite-ss); (4) growth of maslovite-I crystals on early nucleation grains; (5) completion of melt crystallization with formation of maichnerite, sobolevskite-containing solid solution (sobolevskite-ss), frudite-I and gold-silver alloys; (6) subsolidus transformations with decomposition of sobolevskite-ss – sobolevskite+cabriite-II+paolovite-II; hessite-ss – hessite+maslovite-II, as well as additional growth of frudite-II; (7) growth of sperrylite metacrystals and formation of gold-silver alloys. The dominant role of sulfide melt fractionation in formation of large PGM aggregates is confirmed. A new variety of sobolevskite – Cu-Ni-Sb-sobolevskite – is described for the first time.

About the authors

I. A. Kuzmin

V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS

Email: kuzminia@igm.nsc.ru
Novosibirsk, Russia

V. M. Kalugin

Federal State Budgetary Institution Central Research Institute of Geological Prospecting for Base and Precious Metals FSBI TsNIGRI

Email: valery_kalugin@mail.ru
Moscow, Russia

V. V. Smolensky

Saint-Peterburg Mining University

Saint-Peterburg, Russia

References

  1. Ваулин Л.Л., Суханова Е.Н. Октябрьское медно-никелевое месторождение // Разведка и охрана недр. 1970. № 4.
  2. Генкин А.Д. Минералы платиновых металлов и их ассоциации в медно-никелевых рудах Норильского месторождения. М.: Наука, 1968. 106 с.
  3. Генкин А.Д., Евстигнеева Т.Л., Тронева Н.В., Вяльсов Л.Н. Полярит Pd(Pb,Bi)2 – новый минерал из медно-никелевых сульфидных руд // Геология руд. месторождений. 1970. Т. 12. № 5. С. 63–68.
  4. Генкин А.Д., Лапутина И.П., Муравицкая Г.Н. Рутений- и родийсодержащий пентландит – показатель гидротермальной мобилизации платиновых металлов // Геология руд. месторождений. 1974. № 6. С. 102–106.
  5. Годлевский М.Н. Траппы и рудоносные интрузии Норильского района. М.: Госгеолтехиздат, 1959. 63 с.
  6. Годлевский М.Н. Кристаллизационная дифференциация сульфидного расплава на примере Норильских медно-никелевых месторождений // Материалы по геологии и полезным ископаемым Сибирской платформы. Л.: ВСЕГЕИ, 1960. С. 95–101.
  7. Годлевский М.Н. О дифференциальной подвижности компонентов при формировании сульфидных медно-никелевых руд // Геология руд. месторождений. 1967. Т. 9. № 2. С. 17–31.
  8. Григорьев Д.П. Онтогения минералов. Изд-во Львовского университета. Львов, 1961. 281 с.
  9. Дистлер В.В., Служеникин С.Ф., Кабри Л.Дж., Криволуцкая Н.А., Туровцев Д.М., Голованова Т.А., Мохов А.В., КнауфВ.В., Олешкевич О.И. Платиновые руды Норильских расслоенных интрузивов: соотношение магматического и флюидного концентрирования благородных металлов // Геология руд. месторождений. 1999. Т. 41. № 3. С. 241–265.
  10. Дистлер В.В., Синякова Е.Ф., Косяков В.И. Поведение благородных металлов при фракционной кристаллизации богатых медью сульфидных расплавов. Докл. РАН. 2016. Т. 469. № 4. С. 461–464. https://doi.org/10.7868/S0869565216220163
  11. Дюжиков О.А., Дистлер В.В., Струнин Б.М. и др. Геология и рудоносность Норильского района. Москва: Наука, 1988. 279 с.
  12. Егоров В.Н., Суханова Е.Н. Талнахский рудоносный интрузив на северо-западе Сибирской платформы // Разведка и охрана недр. 1963. № 1.
  13. Евстигнеева Т.Л., Некрасов И.Я. Условия синтеза фаз и минеральные равновесия в системах Pd-Sn-Cu и Pd-Sn-Cu-HCl // Очерки физико-химической петрологии. М.: Наука, 1980. Т. 10. С. 20–35.
  14. Евстигнеева Т.Л., Некрасов И.Я. Экспериментальное изучение термодинамических условий образования соединений Pt (куперита и природных Pt-Fe сплавов) // Термодинамика в геологии: Тезисы докладов I Всесоюзного симпозиума. Суздаль, 1985. С. 101–102.
  15. Евстигнеева Т.Л., Генкин А.Д. Платинометальная минерализация норильских медно-никелевых руд: природные и экспериментальные данные // Геология медно-никелевых месторождений СССР. Л.: Наука, 1990. С. 98–106.
  16. Ершов В.В., Попова Г.Б. Экспериментальное изучение диффузионных процессов в сульфидных медно-никелевых рудах Норильского района // Петрология траппов Сибирской платформы. М.: Недра, 1967.
  17. Коваленкер В.А. Минералогия и геохимия селена и теллура. М.: Наука, 1977. 136 с.
  18. Коваленкер В.А., Лапутина И.П., Павлов Е.Г. О распаде природного твердого раствора в системе PbS–PbTe // Упорядочение и распад твердых растворов в минералах. М.: Наука, 1979. С. 185–190.
  19. Котульский В.К. Об эффузивных породах в Норильском районе // Бюл. Бюро техн. Инф. Норильского комбината. 1943. № 2.
  20. Косяков В.И., Синякова Е.Ф. Особенности поведения микропримесей при фракционной кристаллизации сульфидных магм // Докл. РАН. 2015. Т. 460. № 6. С. 697. https://doi.org/10.7868/S0869565215060225
  21. Краснова Н.И., Петров Т.Г. Генезис минеральных видов и агрегатов. СПб: Невский курьер, 1997. 228 с.
  22. Кулагов Э.А. Особенности минерального состава руд месторождения Норильск–I. Автореф. дис. … к. г.-м. н. М.: МГУ, 1968. 239 с.
  23. Лихачёв А.П. Платино-медно-никелевые и платиновые месторождения. М.: Эслан, 2006. 496 с.
  24. Малевский А.Ю. О влиянии селена на изоморфное замещение серы теллуром // Докл. АН СССР. 1963. Т. 152. №1.
  25. Митенков Г.А., Кнауф В.В., Ерцева Л.Н., Емелина Л.Н., Кунилов В.Е., Стехин А.И., Олешкевич О.И., Яценко А.А., Алексеева Л.И. Минералы элементов платиновой группы в сплошных пирротиновых рудах Талнаха // Основные проблемы в учении о магматогенных рудных месторождениях. М.: Наука, 1997. С. 284–285.
  26. Налдретт А.Дж. Магматические сульфидные месторождения медно-никелевых и платинометальных руд. Санкт-Петербург: СпбГУ, 2003. 487 с.
  27. Никитин В.Д. Особенности процессов формирования минералов при метасоматических явлениях // Кристаллография. Л.: Изд-во ЛГУ, 1955. Т. 4. С. 47–68.
  28. Попова Б.Г., Ершов В.В., Кузнецов В.А. Экспериментальное изучение процессов плавления и кристаллизации пентландита // Докл. АН СССР. 1964. Т. 156. № 3. С. 575–579.
  29. Попова Б.Г., Ершов В.В. Физико-химические условия кристаллизации сплошных руд сульфидных медно-никелевых месторождений // Геология руд. месторождений. 1966. № 1. С. 1–15.
  30. Рябов В.В., Шевко А.Я., Гора М.П. Магматические образования Норильского района. Т. 1. Петрология траппов. Новосибирск: изд-во Нонпарель, 2000. 408 с.
  31. Синякова Е.Ф. и др. Поведение примесей благородных металлов при фракционной кристаллизации Cu-Fe-Ni-(Pt, Pd, Rh, Ir, Ru, Ag, Au, Te) сульфидных расплавов // Геология и геофизика. 2019. Т. 60. № 6. С. 820–842.
  32. Синякова Е.Ф., Косяков В.И. Поведение примесей благородных металлов при фракционной кристаллизации Cu-Fe-Ni-сульфидных расплавов, содержащих As и Со // Геология и геофизика. 2012. Т. 53. № 10. С. 1374–1400.
  33. Синякова Е.Ф., Косяков В.И., Горячев Н.А. Образование каплевидных включений на основе Pt, Pd, Au, Ag, Bi, Sb, Te, As при кристаллизации промежуточного твёрдого раствора в системе Cu-Fe-Ni-S // Докл. РАН. 2019. Т. 489. № 1. C. 70–74. https://doi.org/10.31857/S0869-5652489170-74
  34. Синякова Е.Ф., Косяков В.И., Борисенко А.С., Карманов Н.С. Поведение примесей благородных металлов при фракционной кристаллизации Cu-Fe-Ni-(Pt, Pd, Rh, Ir, Ru, Ag, Au, Te) сульфидных расплавов // Геология и геофизика. 2019. Т. 60. № 6. С. 820–842. https://doi.org/10.15372/GiG2019050
  35. Спиридонов Э.М. Рудно-магматические системы Норильского рудного поля // Геология и геофизика. 2010. Т. 51. № 9. С. 1356–1378.
  36. Спиридонов Э.М., Гриценко Ю.Д. Низкоградный метаморфизм и Co–Ni–Sb–As-минерализация в Норильском рудном поле. М.: Научный мир, 2009. 218 с.
  37. Спиридонов Э.М., Кулагов Э.А., Серова А.А., Куликова И.М., Коротаева Н.Н., Середа Е.В., Тушенцова И.Н., Беляков С.Н., Жуков Н.Н. Генетическая минералогия Pd, Pt, Au, Ag, Rh в норильских сульфидных рудах // Геология руд. месторождений. 2015. Т. 57. № 5. С. 445–476. https://doi.org/10.7868/S0016777015050068
  38. Служеникин С.Ф., Дистлер В.В., Дюжиков О.А., Кравцов В.Ф., Кунилов В.Е., Лапутина Л.П., Туровцев Д.М. Малосульфидноеплатиновое оруденение в Норильских дифференцированных интрузивах // Геология руд. месторождений. 1994. Т. 36. № 3. С. 195–217.
  39. Юшко-Захарова О.Е., Малевский А.Ю., Лебедева С.И., Дубакина Л.С. Систематика и свойства природных интерметаллических соединений палладия и платины с оловом, свинцом и медью // Исследования в области прикладной минералогии и кристаллохимии. Сборник статей под ред. Д.А. Минеев. М.: ИМГРЭ, 1973.
  40. Bai Liping, Barnes Sarah-Jane, Baker, Don R. Sperrylite saturation in magmatic sulfide melts: Implications for formation of PGE-bearing arsenides and sulfarsenides // Amer. Miner. 2017. V. 102. № 5. P. 966–974. https://doi.org/10.2138/am-2017-5631
  41. Barkov A.Y., Fleet M.E. An unusual association of hydrothermal platinum-group minerals from the Imandra layered complex, Kola Peinsula, northwestern Russia // Can. Mineral. 2004. V. 42. P. 455–467.
  42. Barkov A.Y., Martin R.F., Poirier G., Yakovlev Y.N. The taimyrite-tatyanaite series and zoning in intermetallic compounds of Pt, Pd, Cu, and Sn from Noril'sk, Siberia, Russia // Can. Mineral. 2000. V. 38. P. 599-609. https://doi.org/10.2113/gscanmin.38.3.599
  43. Barnes S.-J., Cox R.A., Zientek M.L. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia // Contrib. Mineral. Petrol. 2006. V. 152. № 2. P. 187–200. https://doi.org/10.1007/s00410-006-0100-9
  44. Brovchenko V.D., Sluzhenikin S.F., Kovalchuk E.V., Kovrigina S.V., Abramova V.D., Yudovskaya M.A. Platinum Group ElementEnrichment of Natural Quenched Sulfide Solid Solutions, the Norilsk 1 Deposit, Russia // Econ. Geol. 2020. V. 6. P. 1343–1361. https://doi.org/10.5382/econgeo.4741
  45. Cabri L.J. The geology, geochemistry, mineralogy and mineral beneficiation of platinum group elements. Montreal, Canadian Institute of Mining, Metallurgy and Petroleum. CIM Special, 2002. V. 54. 852 p.
  46. Cafagna F., Jugo P.J. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a MSS-ISS-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE // Geochim. Cosmochim. Acta. 2016. V. 178. P. 233–258. https://doi.org/10.1016/j.gca.2015.12.035
  47. Canali A., Brenan J., Sullivan N. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200° C with implications for arsenic speciation and platinum sequestration in mafic igneous systems // Geochim. Cosmochim. Acta. 2017. V. 216. P. 153–168. https://doi.org/10.1016/j.gca.2017.05.006
  48. Craig J.R., Kullerud G. Phase relation in the Cu-Fe-Ni-S system and their application to magmatic ore deposits // Econ. Geol. 1971. V. 65. № 1.
  49. Cook N.J., Ciobanu C.L., Merkle R.K.W., Bernhardt H.J. Sobolevskite, taimyrite, and Pt2CuFe (tulameenite?) in complex massive talnakhite ore, Noril'sk ore field, Russia // Can. Mineral. 2002. V. 40. P. 329–340. https://doi.org/10.2113/gscanmin.40.2.329
  50. Darrow M.S., White W.B., Roy R. Trans. Met. Soc. AJME, 1966. V. 25. № 5.
  51. Helmy H.M. et al. How and when do Pt- and Pd-semimetal minerals crystallize from saturated sulfide liquids? // Frontiers in Earth Science. 2024. V. 11. P. 1275208. https://doi.org/10.3389/feart.2023.1275208
  52. Helmy H.M., Bragagni A. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C // Geochim. Cosmochim. Acta. 2017. V. 216. P. 169–183. https://doi.org/10.1016/j.gca.2017.01.040
  53. Helmy H.M., Ballhaus C., Berndt J., et al. Formation of Pt, Pd and Ni tellurides: experiments in sulfide–telluride systems // Contrib. Mineral. Petrol. 2006. V. 153. № 5. P. 577–591. https://doi.org/10.1007/s00410-006-0163-7
  54. Helmy H., Ballhaus C., Fonseca R., et al. Fractionation of platinum, palladium, nickel, and copper in sulfide–arsenide systems at magmatic temperature // Contrib. Mineral. Petrol. 2013. V. 166. P. 1725–1737. https://doi.org/10.1007/s00410-013-0951-9
  55. Helmy H.M., Ballhaus C., Fonseca R.O., et al. Concentrations of Pt, Pd, S, As, Se and Te in silicate melts at sulfide, arsenide, selenide and telluride saturation: Evidence of PGE complexing in silicate melts? // Contrib. Mineral. Petrol. 2020. V. 175. № 7. P. 1–14. https://doi.org/10.1007/s00410-020-01705-0
  56. Helmy H.M., Botcharnikov R., Ballhaus C., et al. Evolution of magmatic sulfide liquids: how and when base metal sulfides crystallize? // Contrib. Mineral. Petrol. 2021. V. 176. № 12. P. 1–15. https://doi.org/10.1007/s00410-021-01868-4
  57. Kalugin V., Gusev V., Tolstykh N., Lavrenchuk A., Nigmatulina E. Origin of the Pd-Rich pentlandite in the massive sulfide ores of the Talnakh Deposit, Norilsk Region, Russia // Minerals. 2021. V. 11. P. 1258. https://doi.org/10.3390/min11111258
  58. Kosyakov F.I., Sinyakova E.F., Distler V.V. Experimental simulation of phase relationships and zoning of magmatic nickel-copper sulfide ores, Russia // Geology of Ore Deposits. 2012. V. 54. P. 179–208. https://doi.org/10.1134/S1075701512030051
  59. Mansur E.T., Barnes S.-J., Duran C.J., et al. Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril’sk-Talnakhores: Implications for the formation of platinum-group minerals // Mineralium Deposita. 2020. V. 55. P. 1215–1232. https://doi.org/10.1007/s00126-019-00926-z
  60. Mc Laren C.H., De Villiers J.P.R. The platinum-group chemistry and mineralogy of the UG-2 chromite layer of the Bushveld Complex // Econ. Geol. 1982. V. 77. P. 1348–1367.
  61. Naldrett A.J., Fedorenko V.A., Lightfoor P.C., Kunilov V.E., Gorbachov N.S., Doherty W., Johan J. Ni-Cu-PGE deposits of the Norik’sk region, Siberia. Their formation in conduits for flood basalt volcanism // Transactions of the Institute of Mining and Metallurgy. 1995. V. 104. P. B18B36.
  62. Sinyakova E.F., Vasilyeva I.G., Oreshonkov A.S., Goryainov S.V., Karmanov N.S. Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt // Minerals. 2022. V. 12. P. 1136. https://doi.org/10.3390/min12091136
  63. Sinyakova E., Kosyakov V., Distler V., Karmanov N. Behavior of Pt, Pd, and Au during crystallization of Cu-richmagmatic sulfide minerals // Can. Mineral. 2016. V. 54. № 2. P. 491–509. https://doi.org/10.3749/canmin.1500015
  64. Sluzhenikin S.F., Krivolutskaya N.A., Rad’ko V.A., Malitch K.N., Distler V.V., Fedorenko V.A. Ultramafic-mafic intrusions, volcanic rocks and PGE–Cu–Ni sulfide deposits of the Noril’skProvince, Polar Siberia. Yekaterinburg, 2014. 80 p. https://doi.org/10.13140/RG.2.1.1649.8009
  65. Tolstykh N.D., Zhitova L.M., Shapovalova M.O., Chayka I.F. The evolution of the ore-forming system in the low sulfide horizon of the Noril’sk 1 intrusion, Russia // Mineralogical Magazine 1–22. 2019. P. 47. https://doi.org/10.1180/mgm.2019.47
  66. Tolstykh N., Brovchenko V., Rad’ko V., Shapovalova M., Abramova V., Garcia J. Rh, Ir, and Ru partitioning in the Cu-poor IPGE massive ores, Talnakh Intrusion, Skalisty Mine, Russia // Minerals. 2022. V. 12. P. 18. https://doi.org/10.3390/min12010018
  67. Zientek M.L., Likhachev A., Kunilov V., et al. Cumulus processes and the composition of magmatic ore deposits: examples from the Talnakh district, Russia // Ontario Geological Survey Publications. 1994. V. 5. P. 373–392.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».