The estimation of prospectivity of porphyry Cu-Mo-Au mineralization based on biotite composition (on example of the Shakhtama Mo-porphyry and Bystrinsky Cu-Au-Fe-porphyry-skarn deposits, eastern Transbaikalia, Russia)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Economical mineralization of the Bystrinsky Сu-Аu-Fе-porphyry-skarn and Shakhtama Мо-роrрhуrу deposits is confined to multiphase granitoid plutons of the Middle-Late Jurassic Shakhtama complex. The composition of biotite from magmatic rocks of ore-bearing and barren intrusions has been studied to identify the specifics of Cu-Au porphyry and Mo porphyry mineralization. The magmatic origin of the studied biotite and the absence of secondary processes have been demonstrated. Biotite from ore-bearing intrusions of the Bystrinsky and Shakhtama deposits is characterized by high MgO content (>15 wt.%). Low values of IV(F) and IV(F/Cl) calculated from biotites of ore-bearing intrusions indicate enrichment of F and Cl in the fluid phase. It has been determined that the rocks of the ore stocks were formed from oxidized magmas. New data showed that published diagrams for biotite composition are incorrect for separating ore-bearing and barren rocks. Linear discriminant analysis was performed on the obtained biotite compositions of the Bystrinsky and Shakhtama deposits and the author's new discriminatory diagram was proposed. Unlike published diagrams, new discriminant diagram allows to be distinguished potentially ore-bearing intrusive complexes (and their type of mineralization) from barren intrusive complexes by biotite composition and can be used with other indicator minerals in the search for porphyry mineralization.

Sobre autores

V. Vesnin

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Autor responsável pela correspondência
Email: vesninvs@igm.nsc.ru
Novosibirsk, Russia

P. Nevolko

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: nevolko@igm.nsc.ru
Novosibirsk, Russia

T. Svetlitskaya

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: vesninvs@igm.nsc.ru
Novosibirsk, Russia

M. Shapovalova

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: vesninvs@igm.nsc.ru
Novosibirsk, Russia

Bibliografia

  1. Берзина А.П., Берзина А.Н., Гимон В.О., Крымский Р.Ш., Ларионов А.Н., Николаева И.В., Серов П.А. Шахтаминская Mo-порфировая рудно-магматическая система (Восточное Забайкалье): возраст, источники, генетические особенности // Геология и геофизика. 2013. Т. 54. № 6. С. 764–786.
  2. Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Недра, 1990. Кн. 1. 328 с.
  3. Зорин Ю.А., Беличенко В.Г., Рутштейн И.Г., Зорина Л.Д., Спиридонов А.М. Геодинамика западной части Монголо-Охотского складчатого пояса и тектоническая позиция рудных проявлений золота в Забайкалье // Геология и геофизика. 1998. Т. 39 № 11. С. 1578–1586.
  4. Коваленкер В.А., Плотинская О.Ю., Киселева Г.Д., Минервина Е.А., Борисовский С.Е., Жиличева О.М., Языкова Ю.И. Шеелит скарново-порфирового Cu-Au-Fe месторождения Быстринское (Восточное Забайкалье, Россия): генетические следствия // Геология руд. месторождений. 2019. Т. 61. № 6. С. 67–88. https://doi.org/10.31857/S0016-777061667-88
  5. Юргенсон Г.А., Киселева Г.Д., Доломанова-Тополь А.А., Коваленкер В.А., Петров В.А., Абрамова В.Д., Языкова Ю.И., Левицкая Л.А., Трубкин Н.В., Таскаев В.И., Каримова О.В. Строение, минералого-геохимические особенности и условия образования рудных жил Mo-порфирового месторождения Шахтаминское (Восточное Забайкалье) // Геология руд. месторождений. 2023. Т. 65. № 7. С. 662–699. https://doi.org/10.31857/S0016777023070092
  6. Afshooni S.Z., Mirnejad H., Esmaeily D., Haroni A.H. Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran // Ore Geol. Rev. 2013. V. 54. P. 214–232. https://dx.doi.org/10.1016/j.oregeorev.2013.04.004
  7. Ague J.J., Brimhall G.H. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California // Geological Society of America Bulletin. 1988. V. 100(6). P. 891–911. https://doi.org/10.1130/0016-7606(1988)100%3C0891:RVIBCM%3E2.3.CO;2
  8. Ayati F., Yavuz F., Noghreyan M., Haroni H.A., Yavuz R. Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran // Miner. Petrol. 2008. V. 94. P. 107–122. https://doi.org/10.1007/s00710-008-0006-5
  9. Azadbakht Z., Lentz D.R., McFarlane C.R., Whalen J.B. Using magmatic biotite chemistry to differentiate barren and mineralized Silurian–Devonian granitoids of New Brunswick, Canada // Contrib. Mineral. Petrol. 2020. V. 175(7). 69. https://doi.org/10.1007/s00410-020-01703-2
  10. Boomeri M., Nakashima K., Lentz D.R. The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes // J. Geochem. Explor. 2009. V. 103. P. 17–29. https://doi.org/10.1016/j.gexplo.2009.05.003
  11. Boomeri M., Nakashima K., Lentz D.R. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes // Ore Geol. Rev. 2010. V. 38(4). P. 367–381. https://doi.org/10.1016/j.oregeorev.2010.09.001
  12. Brimhall G.H., Crerar D.A. Ore fluids: magmatic to supergene. In: Carmichael, I.S.E., Eugster, H.P. (Eds.) // Thermodynamic Modeling of Geological Materials: Minerals. Fluids and Melts. Rev. Mineral 17. 1987. P. 235–322. https://doi.org/10.1515/9781501508950-010
  13. Clarke D.B. The mineralogy of peraluminous granites: a review // Can. Mineral. 1981. V. 19(1). P. 1–17.
  14. Fu J.B. Chemical composition of biotite in porphyry copper deposits // Geology and Prospecting. 1981. V. 9(1). P. 16–19.
  15. Henry D.J., Guidotti C.V., Thomson J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms // Amer. Mineral. 2005. V. 90(2-3). P. 316–328. https://doi.org/10.2138/am.2005.1498
  16. Idrus A. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes // Indonesian J. Geoscience. 2018. V. 5(1). P. 47–64. https://doi.org/10.17014/ijog.5.1.47-64
  17. Jacobs D.C., Parry W.T. A comparison of the geochemistry of biotite from some basin and range stocks // Econ. Geol. 1976. V. 71(6). P. 1029–1035. https://doi.org/10.2113/gsecongeo.71.6.1029
  18. Jacobs D.C., Parry W.T. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico // Econ. Geol. 1979. V. 74. P. 860–887. https://doi.org/10.2113/gsecongeo.74.4.860
  19. Jin C., Gao X.Y., Chen W.T., Zhao T.P. Magmatic-hydrothermal evolution of the Donggou porphyry Mo deposit at the southern margin of the North China Craton: evidence from chemistry of biotite // Ore Geol. Rev. 2018. V. 92. P. 84–96. https://doi.org/10.1016/j.oregeorev.2017.10.026
  20. Jugo P.J. Sulfur content at sulfide saturation in oxidized magmas // Geology. 2009. V. 37. № 5. P. 415–418. https://doi.org/10.1130/G25527A.1
  21. Li X., Zhang C., Behrens H., Holtz F. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression // Lithos. 2020. V. 356. P. 105371. https://doi.org/10.1016/j.lithos.2020.105371
  22. Liu Y., Gao J.F., Qi L., Min K. Textural and compositional variation of mica from the Dexing porphyry Cu deposit: constraints on the behavior of halogens in porphyry systems // Acta Geochimica. 2023. V. 42(2). P. 221–240. https://doi.org/10.1007/s11631-022-00589-0
  23. Loucks R.R. Distinctive composition of copper-ore-forming arc magmas // Austr. J. Earth Sci. 2014. V. 61. P. 5–16. https://doi.org/10.1080/08120099.2013.865676
  24. Munoz J.L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits // Rev. Mineral. Geochem. 1984. V. 13(1). P. 469–493. https://doi.org/10.1515/9781501508820-015
  25. Nachit H., Ibhi A., Ohoud M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites // Comptes Rendus Geoscience. 2005. V. 337(16). P. 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
  26. Nash W.P., Crecraft H.R. Partition coefficients for trace elements in silicic magmas // Geochim. Cosmochim. Acta. 1985. V. 49(11). P. 2309–2322. https://doi.org/10.1016/0016-7037(85)90231-5
  27. Nevolko P.A., Svetlitskaya T.V., Savichev A.A., Vesnin V.S., Fominykh P.A. Uranium-Pb zircon ages, whole-rock and zircon mineral geochemistry as indicators for magmatic fertility and porphyry Cu-Mo-Au mineralization at the Bystrinsky and Shakhtama deposits, Eastern Transbaikalia, Russia // Ore Geol. Rev. 2021. Vol. 139. P. 104532. https://doi.org/10.1016/j.oregeorev.2021.104532
  28. Parsapoor A., Khalili M., Tepley F., Maghami M. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran) // Ore Geol. Rev. 2015. V. 66. P. 200–218. https://doi.org/10.1016/j.oregeorev.2014.10.015
  29. Pokrovski G.S., Dubrovinsky L.S. The S3–ion is stable in geological fluids at elevated temperatures and pressures // Science. 2011. V. 331(6020). P. 1052–1054. https://doi.org/10.1126/science.1199911
  30. Rasmussen K.L., Mortensen J.K. Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: case studies from the northern Canadian Cordillera // Ore Geol. Rev. 2013. V. 50. P. 118–142. https://doi.org/10.1016/j.oregeorev.2012.09.006
  31. Rezaei M., Zarasvandi A. Titanium-in-biotite thermometry in porphyry copper systems: Challenges to application of the thermometer // Resource Geology. 2020. V. 70(2). P. 157–168. https://doi.org/10.1111/rge.12227
  32. Richards J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation // Econ. Geol. Bull. Soc. Econ. Geol. 2003. V. 98. P. 1515–1533. https://doi.org/10.2113/gsecongeo.98.8.1515
  33. Rieder M., Cavazzini G., D’yakonov Y.S., Frank-Kamenetskii V.A., Gottardi G., Guggenheim S., Wones D.R. Nomenclature of the micas // Clays and clay minerals. 1998. V. 46(5). P. 586–595. https://doi.org/10.1346/CCMN.1998.0460513
  34. Siahcheshm K., Calagari A.A., Abedini A., Lentz D.R. Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn-to post-magmatic hydrothermal fluids // International Geology Review. 2012. V. 54(12). P. 1353–1368. https://doi.org/10.1080/00206814.2011.639487
  35. Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. V. 105. № 1. P. 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
  36. Speer J.A. Evolution of magmatic AFM mineral assemblages in granitoid rocks: the hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina // Am. Mineral. 1987. V. 72. P. 863–878.
  37. Tang P., Tang J.X., Zheng W.B., Leng Q.F., Lin B., Tang X.Q. Mineral chemistry of hydrothermal biotites from Lakang’e porphyry Cu-Mo deposit, Tibet // Earth Sci. Front. 2017. V. 24. P. 265–282. https://dx.doi.org/10.13745/j.esf.yx.2016-11-50
  38. Tang P., Chen Y., Tang J., Wang Y., Zheng W., Leng Q., Wu C. Advances in research of mineral chemistry of magmatic and hydrothermal biotites // Acta Geologica Sinica-English Edition. 2019. 93(6). P. 1947–1966. https://doi.org/10.1111/1755-6724.14395
  39. Tang P., Tang J.X., Lin B., Wang L.Q., Zheng W.B., Leng Q. F., Tang, X.Q. Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet // Ore Geol. Rev. 2019. V. 115. P. 103122. https://doi.org/10.1016/j.oregeorev.2019.103122
  40. Vesnin V.S., Nevolko P. A., Svetlitskaya T.V., Fominykh P.A., Bondarchuk D.V. Apatite geochemistry as a fertility tool for porphyry systems (using the example of the Shakhtama Mo-porphyry and Bystrinsky Cu–Au–Fe-porphyry–skarn deposits, Eastern Transbaikalia, Russia) // Geology of Ore Deposits. 2024. V. 66(1). P. 101–119. https://doi.org/10.1134/S1075701524010070
  41. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Magazine. 2021. V. 85. № 3. P. 291–320. https://doi.org/10.1180/mgm.2021.43
  42. Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. V. 151. P. 413–433. https://doi.org/10.1007/s00410-006-0068-5
  43. Wones D.R., Eugster H.P. Stability of biotite: experiment, theory, and application // Am. Mineral. 1965. V. 50. P. 1228–1272.
  44. Yang X.M., Lentz D.R. Chemical composition of rock-forming minerals in gold-related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution, and fluorine-chlorine activity // Contrib. Mineral. Petrol. 2005. V. 150(3). P. 287–305. https://doi.org/10.1007/s00410-005-0018-7
  45. Yardley B.W. 100th Anniversary Special Paper: metal concentrations in crustal fluids and their relationship to ore formation // Econ. Geol. 2005. V. 100. № 4. P. 613–632. https://doi.org/10.2113/gsecongeo.100.4.613
  46. Yavuz F. Evaluating micas in petrologic and metallogenic aspect: part II—applications using the computer program Mica+ // Comput Geosci. 2003. V. 29. P. 1215–1228. https://doi.org/10.1016/S0098-3004(03)00143-2
  47. Zarasvandi A., Heidari M., Raith J., Rezaei M., Saki A. Geochemical characteristics of collisional and pre-collisional porphyry copper systems in Kerman Cenozoic Magmatic Arc, Iran: Using plagioclase, biotite and amphibole chemistry // Lithos. 2019. V. 326. P. 279–297. https://doi.org/10.1016/j.lithos.2018.12.029
  48. Zhang Q., Shao S., Pan J., Liu Z. Halogen elements as indicator of deep-seated orebodies in the Chadong As–Ag–Au deposit, western Guangdong, China // Ore Geol. Rev. 2001. V. 18. P. 169–179. https://doi.org/10.1016/S0169-1368(01)00028-2
  49. Zhang W., Lentz D.R., Thorne K.G., McFarlane C. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems // Ore Geol. Rev. 2016. V. 77. P. 82–96. https://dx.doi.org/10.1016/j.oregeorev.2016.02.004
  50. Zhong S.H., Feng C.Y., Seltmann, R., Li D.X., Dai Z.H. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite) // Miner. Depos. 2018. V. 53. P. 855–870. https://doi.org/10.1007/s00126-017-0787-8
  51. Zhu C., Sverjensky D.A. F–Cl–OH partitioning between biotite and apatite // Geochim. Cosmochim. Acta. 1992. V. 56. P. 3435–3467 https://doi.org/10.1016/0016-7037(92)90390-5
  52. Zhu Z.Y., Jiang S.Y., Hu J., Gu L.X., Li J. Geochronology, geochemistry, and mineralization of the granodiorite porphyry hosting the Matou Cu–Mo (±W) deposit, Lower Yangtze River metallogenic belt, eastern China // J. Asian Earth Sciences. 2014. V. 79. P. 623–640. https://dx.doi.org/10.1016/j.jseaes.2013.07.033
  53. Zorin Yu.A., Zorina L.D., Spiridonov A.M., Rutshtein I.G. Geodynamic setting of gold deposits in Eastern and Central Trans-Baikal-Chita Region, Russia // Ore Geol. Rev. 2001. V. 17. P. 215–232. https://doi.org/10.1016/S0169-1368(00)00015-9

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».