Lizardite “kolskite” from the Lesnaya Varaka alkaline ultrabasic massif (Kola peninsula): new data

Cover Page

Cite item

Full Text

Abstract

Background. A rare morphological variety of magnesian serpentine, described in 1939 in the veins of the Lesnaya Varaka alkaline ultrabasic massif (Kola Peninsula) under the name “kolskite” is studied. For a long time, this variety has been considered an antigorite.Aim. Identification of the polymorphic modification of “worm-like” serpentine; determination of its crystal chemical features and possible genesis.Materials and methods. Samples were studied using electron probe analysis and scanning electron microscopy by a Jeol JSM-IT500 scanning electron microscope equipped with an INCA X-Max energy dispersion spectrometer; powder X-ray diffraction; infrared spectroscopy using a FSM-1201 IR Fourier spectrometer; and Raman spectroscopy using a EnSpectr R532 spectrometer.Results. Serpentine “kolskite” is represented by lizardite with the empirical formula (Mg2.79Al0.04Fe3+0.01)∑2.84[Si2.06O5](OH)4. The calculated parameters of the trigonal unit cell are as follows: a = 5.32(1) Å, c = 7.88(2) Å, V = 193.0(1) Å3. An increase in parameter c compared to that of apoolivine lizardite typical of ultrabasic objects indicates an expansion of the interlayer distance and is associated with serpentine hydration.Conclusion. The formation of “worm-like” lizardite aggregates could occur either by replacing vermiculite under the action of low-temperature alkaline hydrothermal solutions, or as a result of hypergenic alteration in the earlier apoolivine serpentine.

About the authors

M. O. Bulakh

Lomonosov Moscow State University

Email: aregon27@mail.ru
ORCID iD: 0009-0006-5100-4687
SPIN-code: 9929-8312

References

  1. Белькова Л.Н. Антигорит Лесной Вараки // К минералогии постмагматических процессов. Л.: Изд-во ЛГУ, 1959. С. 152—169.
  2. Зинчук Н.Н. Особенности строения и состава коры выветривания на кимберлитовых породах // Вестник Пермского университета. Геология. 2016. Вып. 1. С. 60—76. https://doi.org/10.17072/psu.geol.30.60
  3. Кухаренко А.А., Орлова М.П., Булах А.Г., Багдасаров Э.А., Римская-Корсакова О.М., Нефедов Е.И., Ильинский Г.А., Сергеев А.С., Абакумова Н.Б. Каледонский комплекс ультраосновных, щелочных пород и карбонатитов Кольского полуострова и Северной Карелии. М.: «Недра», 1965. 772 с.
  4. Balan E., Fritsch E., Radtke G., Paulatto L., Juillot F., Petit S. First-principles modeling of infrared spectrum of antigorite // European Journal of Mineralogy. 2021. Vol. 33. P. 389—400. https://doi.org/10.5194/ejm33-389-2021
  5. Barale L., Capitani G., Castello P., Compagnoni R., Cossio R., Fiore G., Pastero L., Mellini M. Late metamorphic veins with dominant PS-15 polygonal serpentine in the Monte Avic ultramafite // European Journal of Mineralogy. 2023. Vol. 35. No. 3. P. 347— 360. https://doi.org/10.5194/ejm-35-347-2023
  6. Baronnet A., Devouard B. Microstructures of common polygonal serpentine from axial HTREM imaging, electron diffraction, and lattice-simulation data // Canadian Mineralogist. 2005. Vol. 43. P. 513—542.
  7. Chukanov N.V., Vigasina M.F. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer International Publishing, 2020. 1376 p. https://doi.org/10.1007/978-3-030-26803-9
  8. Compagnoni R., Cossio R., Mellini M. Raman anisotropy in serpentine minerals, with a caveat on identification // Journal of Raman Spectroscopy. 2021. Vol. 52. No. 7. P. 1—12. https://doi.org/10.1002/jrs.6128
  9. Evans B.W. The serpentinite multisystem revisited: chrysotile is metastable // International Geology Review. 2004. Vol. 46. P. 479—506.
  10. Faust G.T., Fahey J.J. The serpentine-group minerals. Washington: Geological Survey Professional Paper, 1964. 92 p.
  11. Mellini M. The crystal structure of lisardite 1T: hydrogen bonds and politipism // American Mineralogist. 1982. Vol. 67. P. 587—598.
  12. Mellini M. Structure and microstructure of serpentine minerals // Minerals at the Nanoscale / Eds. Nieto F., Livi K.J.T., Oberti R. European Mineralogical Union Notes in Mineralogy, 2013. Chap. 5. P. 1—27. https://doi.org/10.1180/EMU-notes.14.5
  13. Sakaguchi I., Kouketsu Y., Michibayashi K., Wallis S.R. Attenuated total reflection infrared (ATR–IR) spectroscopy of antigorite, chrysotile, and lizardite // Journal of Mineralogical and Petrological Sciences. 2020. Vol. 115. No. 4. P. 303—312. https://doi.org/10.2465/jmps.190807
  14. Tarling M.T., Rooney J.S., Viti C., Smith S.A.F., Gordon K.C. Distinguishing the Raman spectrum of polygonal serpentine // Journal of Raman Spectroscopy. 2018. Vol. 49. No. 15. P. 1—7. https://doi.org/10.1002/jrs.5475
  15. Tarling M.S., Demurtas M., Smith S.A.F., Rooney J.S., Negrini M., Viti C., Petriglieri J.R., Gordon K.C. Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy // European Journal of Mineralogy. 2022. Vol. 34. P. 285—300. https://doi.org/10.5194/ejm-34-285-2022.
  16. Whittaker E.J.F., Zussman J. The characterization of serpentine minerals by X-ray diffraction // Mineralogical Magazine. 1956. Vol. 31. P. 107—126.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).