The Influence of Corrosion Products on Sorption and Distribution of Actinides on Minerals of Fractured Rocks from the Yeniseisky Site of the Nizhnekansky Massif (Krasnoyarsk Krai)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of metal structures corrosion products of the repository on the sorption behavior of long-lived radionuclides in the environment of the host crystalline rocks should be taken into account during predictive modeling to confirm the safety of deep disposal of radioactive waste (RW). In this work the influence of iron (II/III) on the sorption and spatial distribution of 237Np, 239Pu and 241Am on the minerals of the fractured rock sample of the Yeniseisky site of the Nizhnekansky massif (Krasnoyarsk region) was investigated. Kinetic dependences and quantitative parameters of actinide sorption in the presence of iron in model solutions, including the solution after contact with steel ST3, were obtained. It is shown that the presence of iron in the form of hydroxide increases the sorption/precipitation of actinides, while iron in ionic form practically does not affect the sorption of actinides by rocks. The preferential actinide retention phase, which was formed by iron (III) precipitation on the calcite surface, was determined by digital radiography. It was determined by Raman spectroscopy that this phase corresponds with the iron-bearing mineral lepidocrocite.

About the authors

A. A. Rodionova

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS; Lomonosov Moscow State University

Email: rodionova@geokhi.ru
Kosygin Str., 19, Moscow, 119991 Russia; Leninskie gory, 1, Moscow, 119991 Russia

E. Y. Khvorostinin

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS

Kosygin Str., 19, Moscow, 119991 Russia

S. A. Fimina

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS

Kosygin Str., 19, Moscow, 119991 Russia

V. S. Perova

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS

Kosygin Str., 19, Moscow, 119991 Russia

V. O. Yapaskurt

Lomonosov Moscow State University

Leninskie gory, 1, Moscow, 119991 Russia

I. E. Vlasova

Lomonosov Moscow State University

Leninskie gory, 1, Moscow, 119991 Russia

A. P. Krivenko

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS

Kosygin Str., 19, Moscow, 119991 Russia

S. E. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS

Kosygin Str., 19, Moscow, 119991 Russia

References

  1. Власова И. Э., Захарова Е. В., Волкова А. Г., Аверин А. А., Калмыков С. Н. (2014) Влияние продуктов коррозии на формы нахождения Pu в породах пласта-коллектора при взаимодействии с растворами кислого состава в гидротермальных условиях. Радиохимия. 56(2), 176–183.
  2. Кочкин Б. Т., Линге И. И. (2024) Захоронение РАО на участке Енисейский в Красноярском крае: история выбора площадки и современное состояние исследований. М.: Наука, 368 c.
  3. Родионова А. А., Петров В. Г., Власова И. Э. (2022) Сорбция Np, Pu, Am, Sr, Cs на минеральных фазах пород Нижнеканского гранитоидного массива в условиях ПГЗРО. Радиохимия. 64(6), 573–582.
  4. Родионова А. А., Фимина С. А., Воробей С. С., Винокуров С. Е. (2024) Сорбция Cs, Np, Pu породами участка «Енисейский» в зависимости от температуры и ионной силы растворов после выщелачивания магний-калий-фосфатного компаунда. Атомная энергия. 136(1–2), 56–60.
  5. Anderson E. B., Shabalev S. I., Savonenkov V. G., Lyubtseva E. F., Rogozin Yu. M. (1999) Investigations of the Nizhnekanskiy granitoid massif (Middle Siberia, Russia) as a promising territory for deep geological disposal of HLW: results of pre-exploration stages of the work. MRS Proc. 556(3), 543. https://doi.org/10.1557/PROC-556-543
  6. Arceo-Gomez D. E., Reyes-Trujeque J., Balderas-Hernandez P., Carmona-Hernandez A., Espinoza-Vazquez A., Galvan-Martinez R., Orozco-Cruz R. (2024) Performance and Surface Modification of Cast Iron Corrosion Products by a Green Rust Converter (Mimosa tenuiflora Extract). Surf. 7(1), 143–163. https://doi.org/10.3390/surfaces7010010
  7. Bradbury, M., Berner, U., Curti, E., Hummel, W., Kosakowski, G., Thoenen, T. (2014) The long term geochemical evolution of the nearfield of the HLW repository. Nagra Technical Reports, TR 12–01, Nagra, Villingen, Switzerland, 174.
  8. Dumas T., Fellhauer D., Schild D., Gaona X., Altmaier M., Scheinost A. C. (2019) Plutonium Retention Mechanisms by Magnetite under Anoxic Conditions: Entrapment versus Sorption. ACS Earth Sp. Chem. 3(10), 2197–2206.
  9. Faria D. L., Venancio S. S., Oliveira M. T. (1997) Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides. J. Raman Spectrosc. 28, 873–878.
  10. Finck N., Nedel S., Dideriksen K., Schlegel M. (2016) Trivalent Actinide Uptake by Iron (Hydr)oxides. Environmental Science & Technology. 50(19), 10428–10436. https://doi.org/10.1021/acs.est.6b02599
  11. García D., lutzenkirchen J., Huguenel M., Calmels L., Petrov V., Fink N., Schild D. (2021) Adsorption of strontium onto synthetic iron(III) oxide up to high ionic strength systems. Miner. 11(10), 1–18.
  12. Hanesch M. (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177, 941–948. doi: 10.1111/j.1365-246X.2009.04122.x.
  13. Igin V., Krasilnikov V. (2020) Creation of system of final isolation (disposal) of radioactive waste in the Russian Federation. MRS Adv. 5, 275–282. doi: 10.1557/adv.2020.56.
  14. Jardin L. J. (2005) Development of a Comprehensive Plan for Scientific Research, Exploration, and Design: Creation of an Underground Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif. Report UCRL-TR-213167. P. 476.
  15. Kalmykov S. N., Vlasova I. E., Romanchuk A.Yu., Zakharova E. V., Volkova A. G., Presnyakov I. A. (2014) Partitioning and speciation of Pu in the sedimentary rocks aquifer from the deep liquid nuclear waste disposal. Radiochim. Acta. 103(3), 1–11.
  16. King F., Kolàr M., Briggs S., Behazin M., Keech P., Diomidis N. (2024) Review of the Modelling of Corrosion Processes and Lifetime Prediction for HLW/SF Containers–Part 1: Process Models. Corros. Mater. Degrad. 5, 124–199. https://doi.org/10.3390/cmd5020007
  17. Krawczyk-Bärsch E., Scheinost A. C., Rossberg A., Müller K., Bok F., Hallbeck L., Lehrich J., Schmeide K. (2020) Uranium and neptunium retention mechanisms in Gallionella ferruginea/ferrihydrite systems for remediation purposes. Environmental Science and Pollution Research. 28, 18342–1835. https://doi.org/10.1007/s11356-020-09563-w
  18. Laverov N. P., Yudintsev S. V., Kochkin B. T., Malkovsky V. I. (2016) The Russian strategy of using crystalline rock as a repository for nuclear waste. Elements. 12(4), 253–256. doi: 10.2113/gselements.12.4.253.
  19. Li D., Kaplan D. (2012). Sorption coefficients and molecular mechanisms of Pu, U, Np, Am and Tc to Fe (hydr)oxides: A review. J. of Haz. Mat. 243, 1–18. https://doi.org/10.1016/j.jhazmat.2012.09.011
  20. Liu C., Wang J., Zhang Z., Han E. H. (2017) Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China’s HLW disposal repository. Corros. Eng. Sci. Technol. 52, 136–140.
  21. Lundén I., Andersson K., Skarnemark G. (1996) Modelling of uranium and neptunium chemistry in a deep rock environment, Aquat. Geochem. 2(4), 345–358.
  22. Mahmoudzadeh B., Liu L., Moreno L., Neretnieks I. (2013) Solute transport in fractured rocks with stagnant water zone and rock matrix composed of different geological layers-model development and simulations. Water Resour. Res. 49, 1709–1727. doi: 10.1002/wrcr.20132.
  23. Mazzetti L., Thistlethwaite P. J. (2002) Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J. Raman Spectrosc. 33, 104–111.
  24. McKinley I. G., Russell A. W., Blaser P. C. (2007) Development of geological disposal concepts. Radioact. Environ. 9, P. 41. https://doi.org/10.1016/S1569-4860(06)09003-6
  25. Metcalfe R., Milodowski A. E., Field L. P., Wogelius R. A., Carpenter G., Yardley B. W.D., Norris S. (2021) Natural analogue evidence for controls on radionuclide uptake by fractured crystalline rock. Appl. Geochemistry. 124, 104812. doi: 10.1016/j.apgeochem.2020.10482.
  26. Metz V., Geckeis H., Gonza ́lez-Robles E., Loida A., Bube C., Kienzler B. (2012) Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel. Radiochim. Acta. 100, 699–713. doi: 10.1524/ract.2012.1967.
  27. Mon A., Samper J., Montenegro L., Jesús T. M., Torres E., Cuevas J., Fernandez R., De Windt L. (2023) Reactive transport models of the geochemical interactions at the iron/ bentonite interface in laboratory corrosion tests. Applied Clay Science. 240, 06981. https://doi.org/10.1016/j.clay.2023.106981
  28. Pinto P. S., Lanza G. D., Ardisson J.D, Lago R. M. (2019) Controlled Dehydration of Fe(OH)3 to Fe2O3: Developing Mesopores with Complexing Iron Species for the Adsorption of β-Lactam Antibiotics. J. Braz. Chem. Soc. 30(2), 310–317.
  29. Roberts H. E., Morris K., Mosselmans J., Law G., Shaw S. (2019) Neptunium Reactivity During Co-Precipitation and Oxidation of Fe(II)/Fe(III) (Oxyhydr)oxides. Geoscien. 9(1), 27. https://doi.org/10.3390/geosciences9010027
  30. Rodionova A. A., Petrov V. G., Vlasova I. E., Rozov K. B., Nevolin I. M., Yapaskurt V. O., Rumynin V. G., Kalmykov S. N. (2022) Sorption and spatial distribution of 137Cs,90Sr and241Am on mineral phases of fractured rocks of Nizhnekansky granitoid massif. Energ. 15, 7440. doi: 10.3390/en15197440.
  31. Romanchuk A. Y., Kalmykov S. N., Aliev R. A. (2011) Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations. Radiochim. Acta. 99(3), 137–144.
  32. Romanchuk A. Yu., Trigub A. L., Kalmykov S. N. (2024) Going deeper into plutonium sorption affected by redox. Journal of Contaminant Hydrology. 266, 104400. https://doi.org/10.1016/j.jconhyd.2024.104400
  33. Rozov K. B., Rumynin V. G., Nikulenkov A. M., Leskova P. G. (2018) Sorption of137Cs,90Sr, Se,99Tc,152(154) Eu,239(240) Pu on fractured rocks of the Yeniseysky site (Nizhne-Kansky massif, Krasnoyarsk region, Russia). J. Environ. Radioact. 192, 513–523. doi: 10.1016/j.jenvrad.2018.08.001.
  34. Sakuragi T., Sato S., Kozaki, T., Mitsugashira T., Hara M., Suzuki Y. (2004) Am(III) and Eu(III) uptake on hematite in the presence of humic acid. Radiochim. Acta. 92(9–11), 697–702.
  35. Sanchez A. L., Murray J. W., Sibley T. H. (1985) The adsorption of plutonium IV and V on goethite. Geochim. Cosmochim. Acta. 49(11), 2297–2307.
  36. Scott T. B., Allen G. C., Heard P. J., Randell M. G. (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim. Cosmochim. Acta. 69(24), 5639–5646.
  37. Torres E., Escribano A., Baldonedo J. L., Turrero M. J., Martin P. L., Pena J., Villar M. V. (2009) Evolution of the geochemical conditions in the bentonite barrier and its influence on the corrosion of the carbon steel canister. Mater. Res. Soc. Symp. Proc. 1124, 301–306.
  38. Townsend L. T., Smith K. F., Winstanley E. H., Morris K., Stagg O., Mosselmans J. F.W., Livens F. R., Abrahamsen-Mills L., Blackham R., Shaw S. (2022) Neptunium and Uranium Interactions with Environmentally and Industrially Relevant Iron Minerals. Minerals. 12, 165. https://doi.org/10.3390/min12020165.
  39. Zavarin M., Roberts S. K., Hakem N., Sawvel A. M., Kersting A. B. (2005) Eu(III), Sm(III), Np(V), Pu (V), and Pu(IV) sorption to calcite. Radiochim. Acta. 93, 93–102.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).