Dissolved Molybdenum, Tungsten, and Vanadium at the Oxic–Anoxic Interface in the Black Sea
- Autores: Rimskaya-Korsakova M.N.1, Dubinin A.V.1
-
Afiliações:
- Shirshov Institute оf Oceanology, Russian Academy of Sciences
- Edição: Volume 70, Nº 8 (2025)
- Páginas: 657-674
- Seção: Articles
- URL: https://ogarev-online.ru/0016-7525/article/view/309223
- DOI: https://doi.org/10.31857/S0016752525080051
- EDN: https://elibrary.ru/qfvayw
- ID: 309223
Citar
Resumo
Distribution of dissolved molybdenum, tungsten, and vanadium was investigated in the northeastern part of the Black Sea down to a depth of 320 m. The depth of hydrogen sulfide appearance (the onset of the anaerobic zone) was about 165 m (at a potential density ~16.2 kg m–3) in the studied region. Water samples representing dissolved (< 0.45 μm) species and dissolved plus labile particulate species of the elements were collected in July 2016 and 2017. The concentration of dissolved Mo increased with depth in the oxic zone, from 36 to 39 nmol/kg, and showed no difference from the sum of dissolved and particulate forms. In the anoxic, molybdenum decreased with the appearance of more than ~8 μM hydrogen sulfide reaching 3.3 nmol/kg at 320 m. The concentration of tungsten decreased from 160 pmol/kg at the surface to 113 pmol/kg at the redox interface (in the suboxic layer at depth 150m) in the presence of particulate manganese. As Mn oxyhydroxides dissolved in the hydrogen sulfide zone, W concentrations increased to 221 pmol/kg at the depth 180m, along with an increase in dissolved Mn. The distribution of W at the redox interface is controlled by the sorption properties of manganese oxide. Dissolved vanadium was depleted at a depth of 5 m and increased with depth in the oxic zone to 13 nmol/kg, with a decrease in the suboxic zone (down to 7.1 nmol/kg). In the anoxic zone, a maximum V concentration (up to 15.2 nmol/kg) was observed, coinciding with the maximum of dissolved Mn. The calculated balance of Mo and V in the Black Sea showed that about 1200 of Mo and 1200 of V are buried in sediments annually. As for tungsten, it is assumed its significant supply to the Black Sea in the form of suspended and colloidal matter from rivers, transformed in the process of suboxic diagenesis in sediments.
Palavras-chave
Sobre autores
M. Rimskaya-Korsakova
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: korsakova@ocean.ru
Nakhimovsky Prosp., 36, Moscow, 117997 Russia
A. Dubinin
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Autor responsável pela correspondência
Email: korsakova@ocean.ru
Nakhimovsky Prosp., 36, Moscow, 117997 Russia
Bibliografia
- Виноградов М.Е., Налбандов Ю.Р. (1990) Влияние изменений плотности воды на распределение физических, химических и биологических характеристик экосистемы пелагиали Черного моря. Океанология. 30 (5), 769–777.
- Дубинин А.В., Демидова Т.П., Кременецкий В.В., Кокрятская Н.М., Римская-Корсакова М.Н., Якушев Е.В. (2012) Определение восстановленных форм серы в анаэробной зоне Черного моря: сравнение методов спектрофотометрии и йодометрии. Океанология. 52 (2), 200–209.
- Дубинин А.В., Свальнов В.Н., Бережная Е.Д., Римская- Корсакова М.Н., Демидова Т.П. (2013) Геохимия редких и рассеянных элементов в осадках и марганцевых микроконкрециях Ангольской котловины. Литология и полезные ископаемые. (3), 191–214.
- Римская-Корсакова М.Н., Бережная Е.Д., Дубинин А.В. (2017) Определение молибдена, вольфрама и ванадия в воде Атлантического океана методом ИСП-МС после концентрирования твердофазной экстракцией с 8-оксихинолином. Океанология. 57(4), 587–596.
- Савенко А.В., Бреховских В.Ф., Покровский О.С. (2014) Миграция растворенных микроэлементов в зоне смешения вод Волги и Каспийского моря (по многолетним данным). Геохимия. 59 (7), 590–604.
- Savenko A. V., Brekhovskikh V. F., Pokrovskii O. S. (2014) Migration of dissolved trace elements in the mixing zone between Volga River water and Caspian seawater: Results of observations over many years. Geochem. Int. 52(7), 533–547.
- Стрекопытов С.В. (1998) Молибден и вольфрам в океанских осадках и конкрециях. Геохимия. (9), 936–943.
- Strekopytov S.V. (1998) Molybdenum and tungsten in oceanic sediments and nodules. Geochem. Int. 36(9), 838–845.
- Якушев Е.В., Виноградова Е.Л., Дубинин А.В., Костылева А.В., Меньшикова Н.М., Пахомова С.В. (2012) Об определении низких концентраций кислорода методом Винклера. Океанология. 52(1), 131–138.
- Andrews J.E., Brimblecombe P., Jickells T.D., Liss P.S. (1996) An introduction to environmental chemistry. Oxford: Blackwell Science, 209 p.
- Audry S., Blanc G., Schäfer J., Robert S. (2007) Effect of estuarine sediment resuspension on early diagenesis, sulfide oxidation and dissolved molybdenum and uranium distribution in the Gironde estuary, France. Chemical Geology. 238, 149–167.
- Brucker R.L.P., McManus J., Severmann S., Berelson W.M. (2009) Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochem. Geophys. Geosys. 10, Q06010.
- Collier R.W. (1984) Particulate and dissolved vanadium in the North Pacific Ocean. Nature. 309, 441.
- Colodner D., Edmond J., Boyle E. (1995) Rhenium in the Black Sea: comparison with molybdenum and uranium. Earth Planet. Sci. Lett. 131, 1–15.
- Crusius J., Calvert S., Pedersen T., Sage D. (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78.
- Dahl T.W., Chappaz A., Hoek J., McKenzie C.J., Svane S., Canfield D.E. (2017) Evidence of molybdenum association with particulate organic matter under sulfidic conditions. Geobiology. 15, 311–323.
- Dellwig O., Leipe T., März C., Glockzin M., Pollehne F., Schnetger B., Yakushev E.V., Böttcher M.E., Brumsack H.-J. (2010) A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta. 74(23), 7100–7115.
- Dellwig O., Wegwerth A., Schnetger B., Schulz H., Arz H.W. (2019) Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth Sci. Rev. 193, 1–23.
- Dubinin A.V., Demidova T.P., Dubinina E.O., Rimskaya-Korsakova M.N., Semilova L.S, Berezhnaya E.D., Klyuvitkin A.A., Kravchishina M. D., Belyaev N.A. (2022) Sinking particles in the Black Sea waters: vertical fluxes of elements and pyrite to the bottom, isotopic composition of pyrite sulfur, and hydrogen sulfide production. Chem. Geol. 606, 120996
- Emerson S.R., Huested S.S. (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 34(3), 177–196.
- Erickson B.E., Helz G.R. (2000) Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 64(7), 1149–1158.
- Firdaus L.M., Norisuye K., Nakagawa Y., Nakatsuka S., Sohrin Y. (2008) Dissolved and labile particulate Zr, Hf, Nb, Ta, Mo and W in the western North Pacific Ocean. J. Oceanogr. 64(2), 247–257.
- Gaillardet J., Viers J., Dupré B. (2003) Trace Elements in River Waters. In Treatise on Geochemistry. (Eds. Holland H. D., Turekian K. K.). Amsterdam: Elsevier 5, 225–272.
- Gürkan R., Tamay A., Ulusoy H.İ. (2017) Speciative determination of total V and dissolved inorganic vanadium species in environmental waters by catalytic–kinetic spectrophotometric method. Arabian J. Chem. 10(S1), S13–S22.
- Hein J.R., Mizell K., Koschinsky A., Conrad T.A. (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 51, 1–14.
- Helz G.R., Bura-Nakić E., Mikac N., Ciglenečki I. (2011) New model for molybdenum behavior in euxinic waters. Chem. Geol. 284(3–4), 323–332.
- Ho P., Lee J.-M., Heller M.I., Lam P.J., Shiller A.M. (2018) The distribution of dissolved and particulate Mo and V along the U.S. GEOTRACES East Pacific Zonal Transect (GP16): The roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the hydrothermal plume. Mar. Chem. 201, 242–255.
- Huang J.-H., Huang F., Evans L., Glasauer S. (2015) Vanadium: Global (bio) geochemistry. Chem. Geol. 417, 68–89.
- Jørgensen B.B., Fossing H., Wirsen C.O., Jannasch H.W. (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res. Part A. 38 (Suppl. 2), S1083–S1103.
- Lian J., Wang H., He H., Huang W., Yang M., Zhong Y., Peng P. (2021) The reaction of amorphous iron sulfide with Mo(VI) under different pH conditions. Chemosphere. 266, 128846.
- Miller C.A., Peucker-Ehrenbrink B., Walker B.D., Marcantonio F. (2011) Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta. 75(23), 7146–7179.
- Mohajerin T.J., Helz G.R., White C.D., Johannesson K.H. (2014) Tungsten speciation in sulfidic waters: Determination of thiotungstate formation constants and modeling their distribution in natural waters. Geochim. Cosmochim. Acta. 144, 157–172.
- Mohajerin T.J., Helz G.R., Johannesson K.H. (2016) Tungsten–molybdenum fractionation in estuarine environments. Geochim. Cosmochim. Acta. 177, 105–119.
- Morford J.L., Emerson S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta. 63(11–12), 1735–1750.
- Murray J.W., Codispoti L.A., Friederich G.E. (1995) The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecies Processes. ACS Advances in Chemistry Series (Eds. Huang C. P., O’Melia R., Morgan J. J.), 244, 157–176.
- Murphy J., Riley J.P. (1962) A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 31–36.
- Nägler T.F., Neubert N., Böttcher M.E., Dellwig O., Schnetger B. (2011) Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chem. Geol. 289(1–2), 1–11.
- Neretin L.N., Volkov I.I., Böttcher M.E., Grinenko V.A. (2001) A sulfur budget for the Black Sea anoxic zone. Deep Sea Res. Part I. 48(12), 2569–2593.
- Neretin L.N., Volkov I.I., Rozanov A.G., Demidova T.P., Falina A.S. (2006) Biogeochemistry of the Black Sea anoxic zone with a reference to sulphur cycle. In: Past and Present Water Column Anoxia (Ed. Neretin L. N.) Kluwer Academic Publishers, Dordrecht, 67–104.
- Owens J.D., Reinhard C.T., Rohrssen M., Love G.D., Lyons T.W. (2016) Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth’s carbon cycle. Earth Planet. Sci. Lett. 449, 407–417.
- Özsoy E., Ünlüata Ü. (1997) Oceanography of the Black Sea: A review of some recent results. Earth-Sci. Rev. 42(4), 231–272.
- Pakhomova S., Yakushev E.V. (2013) Manganese and iron at the redox interfaces in the Black Sea, the Baltic Sea, and the Oslo Fjord. In Chemical Structure of Pelagic Redox Interfaces: Observation and Modeling (Ed. Yakushev E. V.) Springer, Berlin Heidelberg, 67–94.
- Piper D.Z., Calvert S.E. (2011) Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years. Geochim. Cosmochim. Acta. 75(19), 5597–5624.
- Pokrovsky O.S., Viers J., Shirokova L.S., Shevchenko V.P., Filipov A.S., Dupré B. (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem. Geol. 273(1–2), 136–149.
- Pokrovsky O., Schott J. (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem. Geol. 190(1–4), 141–179.
- Rickard D. (2006) The solubility of Fe S. Geochim. Cosmochim. Acta. 70(22), 5779–5789.
- Rolison J.M., Stirling C.H., Middag R., Rijkenberg M.J.A. (2017) Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238U/235U paleo-redox proxy. Geochim. Cosmochim. Acta. 203, 69–88.
- Rudnick R.L., Gao S. (2003) 3.01 – Composition of the Continental Crust. In Treatise on Geochemistry (Eds. Holland H. D., Turekian K. K.). Pergamon, Oxford, 1–64.
- Van der Sloot H.A., Hoede D., Hamburg G., Woittiez J.R.W., van der Weijden C.H. (1990) Trace elements in suspended matter from the anoxic hypersaline Tyro and Bannock Basins (eastern Mediterranean). Mar. Chem. 31(1–3), 187–203.
- Scott C., Lyons T.W. (2012) Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem. Geol. 324–325, 19–27.
- Shaffer G. (1986) Phosphate pumps and shuttles in the Black Sea. Nature. 321(6069), 515–517.
- Sohrin Y., Isshiki K., Kuwamoto T., Nakayama E. (1987) Tungsten in north pacific waters. Mar. Chem. 22(2–4), 95–103.
- Sohrin Y., Matsui M., Nakayama E. (1999) Contrasting behavior of tungsten and molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea. Geochim. Cosmochim. Acta. 63(19–20), 3457–3466.
- Stookey L.L. (1970) Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry. 42(7), 779–781.
- Strady E., Blanc G., Schäfer J., Coynel A., Dabrin A. (2009) Dissolved uranium, vanadium and molybdenum behaviours during contrasting freshwater discharges in the Gironde Estuary (SW France). Estuar. Coast. Shelf Sci. 83(4), 550–560.
- Tribovillard N., Algeo T.J., Lyons T., Riboulleau A. (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 232(1–2), 12–32.
- Ünlülata Ü., Oğuz T., Latif M.A., Özsoy E. (1990) On the Physical Oceanography of the Turkish Straits. In The Physical Oceanography of Sea Straits (Ed. Pratt L. J.). Springer Netherlands, Dordrecht, 25–60.
- Vorlicek T.P., Helz G.R., Chappaz A., Vue P., Vezina A., Hunter W. (2018) Molybdenum burial mechanism in sulfidic sediments: Iron-Sulfide pathway. ACS Earth and Space Chemistry. 2(6), 565–576.
- Wang D., Sañudo-Wilhelmy S.A. (2008) Development of an analytical protocol for the determination of V (IV) and V (V) in seawater: Application to coastal environments. Mar. Chem. 112(1–2), 72–80.
- Yakushev E.V., Chasovnikov V.K., Debolskaya E.I., Egorov A.V., Makkaveev P.N., Pakhomova S.V., Podymov O.I., Yakubenko V.G. (2006) The northeastern Black Sea redox zone: Hydrochemical structure and its temporal variability. Deep Sea Res. Part II. 53(17–19), 1769–1786.
- Yiğiterhan O., Murray J.W., Tuğrul S. (2011) Trace metal composition of suspended particulate matter in the water column of the Black Sea. Mar. Chem. 126(1–4), 207–228.
Arquivos suplementares
