Modeling of intraplate basaltic magma crystallization and the evaluation of the influence of metamorphism on rock composition: the Anyui gabbro-dolerite complex, Western Chukotka
- Autores: Bazylev B.1, Ledneva G.2
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Geological Institute, Russian Academy of Sciences
- Edição: Volume 70, Nº 8 (2025)
- Páginas: 577-603
- Seção: Articles
- URL: https://ogarev-online.ru/0016-7525/article/view/309219
- DOI: https://doi.org/10.31857/S0016752525080014
- EDN: https://elibrary.ru/qflxjh
- ID: 309219
Citar
Resumo
The petrography, mineralogy and geochemistry of metamorphosed Permian–Triassic to Early Triassic rocks of the Anyui gabbro-dolerite complex, composing sills in metaterrigenous rocks of the Keperveem and Malyi Anyui uplifts of western Chukotka, were studied to determine the composition of the parental melt of these rocks and to assess the mobility of elements during their metamorphism. To solve these problems, the methods of petrological and geochemical modeling of melt crystallization were applied using the COMAGMAT version 3.72 program. It was established that the rocks (hypabyssal gabbros, gabbrodiorites, and diorites) are derivatives of a single parental melt formed in a large lower crustal magma chamber. These rocks are shown to have crystallized from intraplate continental tholeiitic basaltic parental melt that had a moderately differentiated composition with Mg# 52.1, corresponding to the Cpx–Pl cotectic and exhibited signals of crustal contamination. During regional metamorphism to the greenschist facies, the contents of a number of major, minor, and trace elements in the most of the studied rocks have been changed, with the estimated relative mobility of elements increasing as follows: Eu, V < Mn < Zn, U, Co < Cu, Pb < Sr < Fe, Ba, K, Rb < Ni < Cs < Mg < Ca, Na < Li. The elements immobile during metamorphism were Si, Al, Ti, P, REE (except Eu), Y, Sc, Nb, Ta, and probably also Zr, Hf, and Th (although the contents of the latter in some rocks may reflect the presence of xenogenic accessory minerals). The COMAGMAT program was applied to model the phase crystallization sequence established based on petrographic and mineralogical data on rocks, and the parameters of the compositions of the coexisting minerals during the fractionation stages of the parental melt before magnetite started to crystallize. The application of the petrological–geochemical modeling method in combination with data on the geochemistry and mineralogy of the gabbroids thus allows one to evaluate not only the compositions of the magmas and melts and their changes during fractionation but also an input/output of elements during metamorphism and the degree of their mobility.
Sobre autores
B. Bazylev
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: bazylev@geokhi.ru
Kosygina Street, 19, Moscow, 119991 Russia
G. Ledneva
Geological Institute, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bazylev@geokhi.ru
Pyzhevsky Lane, 7, Moscow, 119017 Russia
Bibliografia
- Акименко Г.И., Акименко А.В. (2013) Государственная геологическая карта Российской Федерации. Масштаб 1:200 000. Серия Анюйско-Чаунская. Лист R-58-XXXV, XXXVI. Объяснительная записка. М.: МФ ВСЕГЕИ.
- Арискин А.А., Бармина Г.С. (2000) Моделирование фазовых равновесий при кристаллизации базальтовых магм. М.: Наука, 363 с.
- Гельман М.Л. (1963) Триасовая диабазовая формация Анюйской зоны (Чукотка). Геология и геофизика. 2, 127–134.
- Геология СССР. Том XXX. Северо-Восток СССР. Геологическое строение. (1970) М.: Недра, книга 1, 548 с.
- Дегтярев В.С. (1975) Петрохимические особенности Амгуэмо- Анюйской диабазовой формации Чукотской складчатой области. Магматизм Северо-Востока Азии. Труды первого Северо-Восточного петрографического совещания. Часть II. Магматические комплексы Северо-Востока СССР. Магадан: Магаданское книжное издательство, 160–175.
- Криволуцкая Н.А., Арискин А.А., Служеникин С.Ф., Туровцев Д.М. (2001) Геохимическая термометрия пород Талнахского интрузива: оценка состава расплава и степени раскристаллизованности исходной магмы. Петрология, 9(5), 451–479.
- Леднева Г.В., Исаева Е.П., Соколов С.Д., Базылев Б.А., Болдырева А. И. (2022) Циркон из внутриплитных габброидов Западной Чукотки (анюйский плутонический комплекс) и интерпретация его возраста. ДАН о Земле. 505(1), 46–52.
- Николаев Г.С., Арискин А.А. (2005) Бураковско-Аганозёрский расслоенный массив Заонежья: II. Строение краевой группы и оценка состава родоначальной магмы методом гео- химической термометрии. Геохимия. (7), 712–732.
- Nikolaev G.S., Ariskin A.A. (2005) Burakovo-Aganozero layered massif in the Trans-Onega area: II. Structure of the marginal series and the estimation of the parental magma composition by geochemical thermometry techniques. Geochem. Int. 43(7), 646–665.
- Ольшевский В.М. (1980) Дифференциация диабазовых силлов в Анюйской складчатой зоне. Материалы по геологии и полезным ископаемым Северо-Востока СССР, (25), 52–60.
- Adam J., Green T. (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib. Mineral. Petrol. 152, 1–17.
- Ague J.J. (2017) Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE). Am. Mineral. 102(9), 1796–1821.
- Ariskin A.A., Barmina G.S. (2004) COMAGMAT: development of a magma crystallization model and its petrological applications. Geochem. Int. 42(Suppl. 1), S1–S157.
- Bédard J.H. (2023) Trace element partitioning coefficients between terrestrial silicate melts and plagioclase feldspar: Improved and simplified parameters. Geochim. Cosmochim. Acta. 350, 69–86.
- Bartley J.M. (1986) Evaluation of REE mobility in low-grade metabasalts using mass-balance calculations. Norsk Geologisk Tidsskrift. 66, 145–152.
- Blundy J., Wood B. (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature. 372, 452–454.
- Cann J.R. (1970) Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth Planet. Sci. Lett. 1(1), 7–11.
- Grant J.A. (1986) The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 81(8), 1976–1982.
- Jenner G.A. (1996) Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry. In Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration (Ed. Wyman D. A.). Geological Association of Canada, Short Course Notes, 12, 51–77.
- Ledneva G.V., Bazylev B.A., Layer P.W., Ishiwatari A., Sokolov S.D., Kononkova N.N., Tikhomirov P.L., Novikova M.S. (2014) Intra-plate gabbroic rocks of Permo–Triassic to Early–Middle Triassic dike-and-sill province of Chukotka (Russia). In ICAM VI: Proceedings of the International Conference on Arctic Margins (Eds. Stone D.B., Grikurov G.E., Clough J.G., Oakey G.N., Thurston D.K.). St. Petersburg: A.P. Karpinsky Russian Geological Research Institute (VSEGEI), 115–156.
- Ledneva G.V., Pease V.L., Sokolov S.D. (2011) Permo–Triassic hypabyssal mafic intrusions and associated tholeiitic basalts of the Kolyuchinskaya Bay, Chukotka (NE Russia): Links to the Siberian LIP. J. Asian Earth Sci. 40, 737–745.
- McDonough W.F., Sun S.-S. (1995) The composition of the Earth. Chem. Geol. 120, 223–253.
- MacLean W.H., Barrett T. J. (1993) Lithogeochemical techniques using immobile elements. J. Geochem. Explor. 48, 109–133.
- Norman M., Garcia M.O., Pietruszka A.J. (2005) Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawai’i, and petrogenesis of differentiated rift-zone lavas. Am. Mineral. 90, 888–899.
- Pearce J.A., Cann J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sсi. Lett. 19, 290–300.
- Pearce J.A. (1996) A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for massive sulfide exploration (Ed. Wyman D. A.). Geological Society of Canada, Short Couse Notes. 12, 79–113.
- Sun C., Graff M., Liang Y. (2017) Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochim. Cosmochim. Acta. 206, 273–295.
- Tuchkova M. I., Sokolov S., Kravchenko-Berezhnoy I.R. (2009) Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia. Stephan Mueller Spec. Publ. Ser. 4, 177–200.
- Verma S.P., Diaz-Gonzalez L., Rivera-Gomez М.A., Rosales-Rivera M. (2020) New multidimensional classification scheme of altered igneous rocks from performance comparison of isometric and modified log-ratio transformations of major elements. Earth Sci. Inf. 13, 1031–1064.
- Zajacz Z., Halter W. (2007) LA-ICPMS analyses of silicate melt inclusions in coprecipitated minerals: Quantification, data analysis and mineral/melt partitioning. Geochim. Cosmochim. Acta. 71(4), 1021–1040.
Arquivos suplementares
