Thermodynamic analysis of NiXFe1–X alloy oxidation
- Autores: Devyatova V.N.1, Simakin A.G.1, Nekrasov A.N.1
-
Afiliações:
- D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS)
- Edição: Volume 70, Nº 3 (2025)
- Páginas: 214-226
- Seção: Articles
- URL: https://ogarev-online.ru/0016-7525/article/view/305580
- DOI: https://doi.org/10.31857/S0016752525030027
- EDN: https://elibrary.ru/fxuung
- ID: 305580
Citar
Resumo
Thermodynamic analysis of NixFe1–x oxidation in a wide range of temperatures and earth’s crust pressures was performed for awaruite Ni3Fe and other (Ni–Fe)-phases, which are widespread in serpentinized ultrabasites. It was found that oxygen fugacity fO2 of the γ(NixFe1–x)-iron oxide equilibrium is in the range NNO–IW. For γ(NixFe1–x) with iron mole fraction x ≥ 0.5, oxygen fugacity approaches the IW buffer. The reaction of kamacite α(Ni0.05Fe0.95) with oxygen is close to the IW–IM buffer reactions. The oxygen fugacity at which awaruite is preserved at T = 400–600 K does not exceed ∆QFM = –7.8 ÷ –5.2, for T > 1000–1200 K – ∆QFM = –2.7 ÷ –2.0. The obtained approximations can be used to estimate the oxygen fugacity for low-sulfide systems involving NixFe1-x under the conditions of the earth’s crust.
Palavras-chave
Sobre autores
V. Devyatova
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS)
Email: dev@iem.ac.ru
Academica Osypyana str., 4, Chernogolovka, Moscow region, 142432 Russia
A. Simakin
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS)
Email: dev@iem.ac.ru
Academica Osypyana str., 4, Chernogolovka, Moscow region, 142432 Russia
A. Nekrasov
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS)
Autor responsável pela correspondência
Email: dev@iem.ac.ru
Academica Osypyana str., 4, Chernogolovka, Moscow region, 142432 Russia
Bibliografia
- Базылев Б. А. (2000). Развитие аваруитсодержащей минеральной ассоциации в перидотитах из зоны разлома 15° 20' (Атлантический океан) как одно из проявлений океанического метаморфизма. Российский журнал наук о Земле. 2(3/4), 279–293.
- Базылев Б. А. (1997). Аллохимический метаморфизм мантийных перидотитов из зоны разлома Хэйс, Северная Атлантика. Петрология. 5(4), 362–379.
- Бенар Ж. (1969). Окисление металлов. Т. 2. М.: Металлургия. 448 с.
- Вестбрук Д. К. (1970). Интерметаллические соединения. М.: Металлургия. 438 с.
- Дмитриев Л. В., Базылев Б. А., Силантьев С. А., Борисов М. В., Соколов С. Ю., Буго А. (1999). Образование водорода и метана при серпентинизации мантийных гипербазитов океана и происхождение нефти. Российский журнал наук о Земле. 1(6), 511–519.
- Костов И. (1971). Минералогия. М.: Мир. 584 с.
- Кауфман Л., Бернстейн Х. (1972). Расчет диаграмм состояния с помощью ЭВМ. М.: Мир. 326 с.
- Макеев А. Б., Брянчанинова Н. И. (1999). Топоминералогия ультрабазитов Полярного Урала. СПб.: Наука. 252 с.
- Новаков Р. М., Москалева С. В., Иванов В. В., Паламар С. В. (2014). Пентландиты и аваруиты гипербазитового массива г. Солдатской (п-ов Камчатский мыс, Вост. Камчатка). Вестник Камчатской региональной организации Учебно-научный центр. Серия: Науки о Земле. (2), 137–146.
- Пучков В. Н., Штейнберг Д. С. (1990). Строение, эволюция и минерагения гипербазитового массива Рай-Из. Свердловск: УрО АН СССР. 226 с.
- Рамдор П. (1967). О широко распространенном парагенезисе рудных минералов, возникающих при серпентинизации. Геология рудных месторождений. (2), 32–43.
- Симакин А. Г., Салова Т. П., Шапошникова О. Ю., Исаенко С. И., Некрасов А. Н. (2021). Экспериментальное исследование взаимодействия углекислого флюида с минералами кумулуса ультраосновных интрузий при 950 °С и 200 МПа. Петрология. 29(4), 411–428.
- Тюрин А. Г. (2011). Термодинамика химической и электрохимической устойчивости твердых сплавов железа, хрома и никеля. Челябинск: Изд-во ЧелГУ. 241 с.
- Abrajano T. A., Pasteris J. D. (1984). The stabilization of native iron and iron-alloys (NIIA) during hydratation of ultramafic rocks. EOS Trans. 65, 1123.
- Alt J. C., Shanks III, W. C. (1998). Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction. J. Geophys. Res.: Solid Earth. 103(B5), 9917–9929.
- Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. (2003). Handbook of mineralogy. Mineralogical Society of America, Chantilly, VA 20151-1110, USA. Dirección: http://www.handbookofmineralogy.org
- Barin I. (1995). Thermochemical data of pure substances. VCH, Weinheim.
- Bird J. M., Weathers M. S. (1979). Origin of josephinite. Geochem. J. 13(2), 41–55.
- Bonnand P., Halliday A. N. (2018). Oxidized conditions in iron meteorite parent bodies. Nat. Geosci. 11(6), 401–404.
- Cameron S., Staudigel H. (2004). Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Geological Society, London, Special Publications. 226(1), 247–271.
- Chamberlain J. A., McLeod C. R., Traill R. J., Lachance G. R. (1965). Native metals in the Muskox intrusion. Can. J. Earth Sci. 2(3), 188–215.
- Cacciamani G., Dinsdale A., Palumbo M., Pasturel A. (2010). The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations. Intermetallics. 18(6), 1148–1162.
- Cacciamani G., De Keyzer J., Ferro R., Klotz U. E., Lacaze J., Wollants P. (2006). Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics. 14(10–11), 1312–1325.
- Charlou J. L., Donval J. P., Fouquet Y., Jean-Baptiste P., Holm N. (2002). Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 191(4), 345–359.
- Chuang Y. Y., Chang Y. A., Schmid R., Lin J. C. (1986). Magnetic contributions to the thermodynamic functions of alloys and the phase equilibria of Fe–Ni system below 1200 K. Metall. Trans. A, 17, 1361–1372.
- Conard B. R., McAneney T. B., Sridhar R. (1978). Thermodynamics of iron-nickel alloys by mass spectrometry. Metall. Trans. B, 9, 463–468.
- Dalvi A. D., Sridhar R. (1976). Thermodynamics of the Fe–Ni–O and Fe–Ni systems at 1065 K to 1380 K. Can. Metall. Q. 15(4), 349–357.
- Eckstrand O. R. (1975). The Dumont serpentinite: A model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ. Geol. 70(1), 183–201.
- Evans K. A., Reddy S. M., Tomkins A. G., Crossley R. J., Frost B. R. (2017). Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos. 278, 26–42.
- Evans K. A., Frost B. R. (2020). Deserpentinization in subduction zones as a source of oxidation in arcs: A reality check. J. Petrol. 62(1), 1–32.
- Evans K. A., Frost B. R., Reddy S. M., Brown T. C. (2023). Causes, effects, and implications of the relationships amongst fluids, serpentinisation, and alloys. Lithos. 446, 107132.
- Filippidis A. (1982). Experimental study of the serpentinization of Mg–Fe–Ni olivine in the presence of sulfur. Can. Mineral. 20, 567–514.
- Filippidis A. (1985). Formation of awaruite in the system Ni–Fe–Mg–Si–OHS and olivine hydration with NaOH solution, an experimental study. Econ. Geol. 80(7), 1974–1980.
- Foustoukos D. I., Bizimis M., Frisby C., Shirey S. B. (2015). Redox controls on Ni–Fe–PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. Geochim. Cosmochim. Acta. 150, 11–25.
- Frost B. R. (1985). On the stability of sulfides, oxides, and native metals in serpentinite. J. Petrol. 26(1), 31–63.
- Frost B. R. (1991). An introduction to oxygen fugacity and its petrologic importance. In: Lindsley D. H. (ed.) Mineralogical Society of America, Reviews in Mineralogy. Oxide minerals: petrologic and magnetic significance. 25, 1–10.
- Griffin W. L., Afonso J. C., Belousova E. A., Gain S. E., Gong X. H., Gonzalez-Jimenez J. M., Howell D., Huang J.-X., McGowan N. M., Pearson N. J., Satsukawa T., Shi R., Williams P., Xiong Q., Yang J.-S., Zhang M., O’Reilly S. Y. (2016). Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J. Petrol. 57(4), 655–684.
- Göpel C., Manhès G., Allègre C. J. (1990). U–Pb isotope systematics in josephinites and associated rocks. Earth Planet. Sci. Lett. 97(1–2), 18–28.
- Hillert M., Jarl M. (1978). A model for alloying in ferromagnetic metals. Calphad. 2(3), 227–238.
- Howald R. A. (1999). Thermodynamics of the second order transitions in alpha and epsilon iron. Plasmas Ions. 2(2), 69–78.
- Howald R. A. (2003). The thermodynamics of tetrataenite and awaruite: A review of the Fe–Ni phase diagram. Metall. Mater. Trans. A. 34, 1759–1769.
- Jamieson G. S. (1905). ART. XLIII.–On the natural iron–nickel alloy, awaruite. Am. J. Sci. (1880–1910). 19(114), 413.
- Kanehira K., Banno S., Yui S. (1975). Awaruite, heazlewoodite, and native copper in serpentinized peridotite from the Mineoka district, Southern Boso Peninsula. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists. 70(11), 388–394.
- Kitakaze A., Sugaki A., Itoh H., Komatsu R. (2011). A revision of phase relations in the system Fe–Ni–S from 650 to 450 °C. Can. Mineral. 49(6), 1687–1710.
- Klein F., Bach W. (2009). Fe–Ni–Co–O–S phase relations in peridotite–seawater interactions. J. Petrol. 50(1), 37–59.
- Klein F., Bach W., Jöns N., McCollom T., Moskowitz B., Berquó T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta. 73(22), 6868–6893.
- Konn C., Charlou J. L., Holm N. G., Mousis O. (2015). The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology. 15(5), 381–399.
- Krishna Rao J. S. R. (1964). Chromite from Kondapalle, Kristna District, Andhra Pradesh, India. Econ. Geol. 59(4), 678–683.
- Kutyrev A., Kamenetsky V. S., Kontonikas-Charos A., Savelyev D. P., Yakich T. Y., Belousov I. A., Sandimirova E. I., Moskaleva S. V. (2023). Behavior of Platinum-Group Elements during Hydrous Metamorphism: Constraints from Awaruite (Ni₃Fe) Mineralization. Lithosphere. 2023(1), lithosphere_2023_126.
- Lazar C. (2020). Using silica activity to model redox-dependent fluid compositions in serpentinites from 100 to 700 °C and from 1 to 20 kbar. J. Petrol. 61(11–12), egaa101.
- Luoma R. (1995). A thermodynamic analysis of the system Fe–Ni–O. Calphad. 19(3), 279–295.
- Nayak B., Meyer F. M. (2015). Tetrataenite in terrestrial rock. Am. Mineral. 100(1), 209–214.
- Ohnuma I., Shimenouchi S., Omori T., Ishida K., Kainuma R. (2019). Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system. Calphad. 67, 101677.
- Olsen E. (1963). Equilibrium calculation in the system Mg, Fe, Si, O, H and Ni. Am. J. Sci. 261, 943–956.
- Ono Y. (1977). Diffusion in liquid iron and its alloys. Tetsu-to-Hagane. 63(8), 1350–1361.
- Osadchii V. O., Fedkin M. V., Osadchii E. G. (2017). Determination of the equilibrium fO₂ in bulk samples of H, L, and LL ordinary chondrites by solid-state electrochemistry. Meteorit. Planet. Sci. 52(10), 2275–2283.
- Peretti A., Dubessy J., Mullis J., Frost B. R., Trommsdorff V. (1992). Highly reducing conditions during Alpine metamorphism of the Malenco peridotite (Sondrio, northern Italy) indicated by mineral paragenesis and H₂ in fluid inclusions. Contrib. Mineral. Petrol. 112, 329–340.
- Piccoli F., Hermann J., Pettke T., Connolly J. A. D., Kempf E. D., Vieira Duarte J. F. (2019). Subducting serpentinites release reduced, not oxidized, aqueous fluids. Sci. Rep. 9(1), 19573.
- Proskurowski G., Lilley M. D., Seewald J. S., Früh-Green G. L., Olson E. J., Lupton J. E., Sylva S. P., Kelley D. S. (2008). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science. 319(5863), 604–607.
- Rajabzadeh M. A., Moosavinasab Z. (2013). Mineralogy and distribution of Platinum-Group Minerals (PGM) and other solid inclusions in the Faryab ophiolitic chromitites, Southern Iran. Mineral. Petrol. 107, 943–962.
- Ramdohr P. (1950). Über Josephinit, Awaruit, Souesit, ihre Eigenschaften, Entstehung und Paragenesis. Mineral. Mag. J. Mineral. Soc. 29(211), 374–394.
- Rhamdhani M. A., Hayes P. C., Jak E. (2008). Subsolidus phase equilibria of the Fe–Ni–O system. Metall. Trans. B. 39, 690–701.
- Robie R. A., Hemingway B. S. (1995). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, 2131, 461 p.
- Robinson P. T., Bai W. J., Malpas J., Yang J. S., Zhou M. F., Fang Q. S., Hu X. F., Cameron S., Staudigel H. (2004). Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Geological Society, London, Special Publications. 226(1), 247–271.
- Roeder G. A., Smeltzer W. W. (1964). The dissociation pressures of iron–nickel oxides. J. Electrochem. Soc. 111(9), 1074.
- Shao H., Isobe H., Miao B. (2020). Reproduction of I-type cosmic spherules and characterization in an Fe–Ni–O system. Meteorit. Planet. Sci. 55(9), 2066–2079.
- Shiryaev A. A., Griffin W. L., Stoyanov E. (2011). Moissanite (SiC) from kimberlites: Polytypes, trace elements, inclusions and speculations on origin. Lithos. 122(3–4), 152–164.
- Simakin A., Salova T., Borisova A. Y., Pokrovski G. S., Shaposhnikova O., Tyutyunnik O., Bondarenko G., Nekrasov A., Isaenko S. I. (2021). Experimental study of Pt solubility in the CO–CO₂ fluid at low fO₂ and subsolidus conditions of the ultramafic–mafic intrusions. Minerals. 11(2), 225.
- Simakin A. G., Shaposhnikova O. Y., Devyatova V. N., Isaenko S. I., Eremin D. D. (2024, February). Estimation of chlorine fugacity in low-H₂O fluid of the C–O–(H)–NaCl system in the cumulus of ultramafic–mafic intrusions. In: Dokl. Earth Sci. (pp. 1–7). Moscow: Pleiades Publishing.
- Swartzendruber L. J., Itkin V. P., Alcock C. B. (1991). The Fe–Ni (iron–nickel) system. J. Phase Equilib. 12, 288–312.
- Warr L. N. (2021). IMA–CNMNC approved mineral symbols. Mineral. Mag. 85(3), 291–320.
- Williams R. J. (1971). Equilibrium temperatures, pressures, and oxygen fugacities of the equilibrated chondrites. Geochim. Cosmochim. Acta. 35(4), 407–411.
- Wood B. J., Wade J., Kilburn M. R. (2008). Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta. 72(5), 1415–1426.
- Yang C. W., Williams D. B., Goldstein J. I. (1996). A revision of the Fe–Ni phase diagram at low temperatures (< 400 °C). J. Phase Equilib. 17, 522–531.
- Yang J. S., Dobrzhinetskaya L., Bai W. J., Fang Q. S., Robinson P. T., Zhang J., Green H. W. (2007). Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology. 35(10), 875–878.
- Yang J., Meng F., Xu X., Robinson P. T., Dilek Y., Makeyev A. B., Wirth R., Wiedenbeck M., Cliff J. (2015). Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 27(2), 459–485.
- Zhu M., Liu Y. (1981). Discovery of native chromium in Xizang (Tibet). Chin. Sci. Bull. 26(11), 1014–1017.
Arquivos suplementares
