


Том 56, № 7 (2018)
- Жылы: 2018
- Мақалалар: 10
- URL: https://ogarev-online.ru/0016-7029/issue/view/9450
Article
Experimental Study of Unequilibrated Silica Transfer from Liquid Water to the Vapor Phase
Аннотация
Experiments were carried out in hermetically sealed platinum capsules, with water saturated with silica with respect to quartz at 300°C in the lower parts of the electric furnaces, where the temperature slightly increases upward at 0.15°C/cm. Our earlier studies (Alekseyev and Medvedeva, 2017) have shown that these exactly experimental parameters are favorable for silica transfer from the liquid to vapor phase. The statistically processed experimental results show that the molal silica concentration in the liquid phase (m) exponentially decreases with time. This dependence and the fact that the newly produced opal occurs on the capsule walls above the meniscus are consistent with the distillation model. The scatter of the experimental m values turned out to be caused not by differences in the temperature gradient in different wells of the electric furnaces but by the natural roughness of the inner walls of the capsules, which differed from one capsule to another and could even change with time in any given capsule. In the capsules with roughness artificially made on their walls, m decreased much more rapidly, and not only in the bottom but also in the upper parts of the electric furnaces, where temperature decreased upward (–0.08°C/cm). This may suggest that the discovered phenomenon is spread in nature more widely than surmised previously, because this phenomenon does not strongly depend on the direction of the temperature gradient, and voids in natural rocks usually have rough walls.



Age and Geochemistry of the Cape Burks Gabbroids (Russkaya Station Area, West Antarctica)
Аннотация
The paper reports first geological, chemical, mineralogical, Sr–Nd chemical–isotope, and geochronological data on the gabbroid massif discovered on the Hobbs coast in the Cape Burks area, West Antarctica. The area is made up of compositionally diverse gabbroids that are intersected by thin vein and dike bodies of mafic, intermediate, and fesic composition. The gabbroids are represented by olivine and olivinefree gabbros and gabbronorites, with sharply subordinate troctolites, gabbro–anorthosites, and anorthosites. The U–Pb SHRIMP–II zircon age of the gabbroids and vein rocks was estimated at 100 ± 1 Ma. The gabbroids were supposedly emplaced in the upper crust in tectonically active conditions. The thickness of the pluton is no less than 2.5–3 km. The rocks were crystallized from a highly fractionated melt. Their composition was mainly determined by accumulation and fractional crystallization. The origin of vein felsic rocks was likely related to an evolved residual liquid. The igneous complex was formed in a within–plate geodynamic setting, and its primary melts were derived from a weakly LILE enriched lithospheric mantle.



Trace Elements in Alkaline Lamprophyres, Clinopyroxene, and Amphibole of the Tomtor Massif and the Ore Potential of the Melts
Аннотация
Data obtained on lamprophyres from the carbonatite–volcanic unit in the lower horizon of the Tomtor Massif indicate that the rocks and zoned diopside and kaersutite phenocrysts in them are enriched in incompatible elements more significantly than is typical of alkaline ultramafic rocks of the Maymecha–Kotui and Kola provinces. The concentrations of these elements and their indicator ratios in the cores and intermediate zones of the diopside and kaersutite phenocrysts significantly vary, and this suggests that the minerals might have crystallized from different melts. This is consistent with the earlier conclusions, which were derived from studying melt inclusions, that the phenocrysts crystallized from mixing alkaline mafic melts of sodic and potassic types and different Mg–number which were enriched in the carbonatite component. The cores of the diopside phenocrysts started to crystallize from sodic mafic magma in a magmatic chamber, while the intermediate and outermost zones of this mineral crystallized from mixed sodic–potassic mafic melts. The carbonatite component was separated from the sodic mafic melt at high temperature (>1150°C) during diopside core crystallization. The bulk compositions of the alkaline lamprophyres and of the diopside and kaersutite phenocrysts contain lower normalized concentrations of HREE than LREE. This led us to conclude that the parental sodic and potassic mafic melts were derived from an enriched mantle source material under garnet–facies parameters, as is typical of continental rifts. It is noteworthy that the potassic mafic melt was derived at greater depths and lower degrees of melting of the mantle source than the sodic melt. The iron–rich sodic melt from which the cores of the diopside phenocrysts started to crystallize was enriched in V, REE, Y, and volatile components (H2O, CO2, F, Cl, and S). The onset of carbonate–silicate liquid immiscibility was marked by the redistribution of REE and Y into the carbonatite melt. The potassic, more Mg–rich mafic melt from which the intermediate and outermost zones of the diopside phenocrysts crystallized was enriched in Ti, Nb, Zr, and REE and always remained homogeneous when this mineral crystallized.



Petrology and Rare Earth Elements Mineral Chemistry of Chadegan Metabasites (Sanandaj-Sirjan Zone, Iran): Evidence for Eclogite-Facies Metamorphism during Neotethyan Subduction
Аннотация
The metabasites of Chadegan, including eclogite, garnet amphibolite and amphibolite, are forming a part of Sanandaj–Sirjan Zone. These rocks have formed during the subduction of the Neo–Tethys ocean crust under Iranian plate. This subduction resulted in a subduction metamorphism under high pressuremedium temperature of eclogite and amphibolites facies condition. Then the metamorphic rocks were exhumed during the continental collision between the Afro–Arabian continent and the Iranian microcontinent. In the metabasite rocks, with typical MORB composition, garnet preserved a compositional zoning occurred during metamorphism. The magnesium (XMg) gradually increases from core to rim of garnets, while the manganese (XMn) decreases towards the rim. Chondrite–normalized Rare Earth Element patterns for these garnets exhibit core–to–rim increases in Light Rare Earth Elements. The chondrite–normalized REE patterns of garnets, amphiboles and pyroxenes display positive trend from LREEs to Heavy Rare Earth Elements (especially in garnet), which suggests the role of these minerals as the major controller of HREE distribution. The geochemical features show that the studied eclogite and associated rocks have a MORB origin, and probably formed in a deep–seated subduction channel environment. The geothermometry estimation yields average pressure of ~22 kbar and temperature of 470–520°C for eclogite fomation. The thermobarometry results gave T = 650–700°C and P ≈ 10–11 kbar for amphibolite facies.



Features and Factors of Time Variations in Hydrogen Release at Lovozersky Rare-Metal Deposit (Kola Peninsula)
Аннотация
The paper presents the results of a long–term (52 months) monitoring of molecular hydrogen release from the rocks of the Lovozero Massif. Observations are performed in an underground mine with the help of a portable highly sensitive gas analyzer developed at the National Research Nuclear University MEPhI. The strong variability (of 0.7 to 303 ppm) of the dynamics of the volume concentration of hydrogen (φH2) is established. The main elements of the structure of the time series obtained consist of the fact that they have quite sustained and long intervals of low background concentrations, low–amplitude excesses of various durations, and short (usually high–amplitude) bursts. Seasonal and off–season periodic and other cyclic components in the structure of the series are identified. It is shown that the most important factors determining the dynamics of φH2 are barogenic (variation in the atmospheric pressure) and technogenic (technological explosions). Possible mechanisms of gas release are considered.



Fractionation of Carbonate Carbon (Ccarb) Accumulation between Continents and Oceans in the Late Mesozoic–Cenozoic
Аннотация
The Ccarb masses per time unit was determined for separate oceanic basins and for the entire World Ocean using lithological–facies mapping of the Neo– and Eopleistocene age sections of the Pleistocene pelagic zones in the World Ocean. These parameters are compared with those of continents, continental shelves and slopes, and oceans, which were recalculated using data by Ronov (1993) for the Upper Jurassic–Pliocene. At the Mesozoic–Cenozoic boundary, carbonate accumulation was shifted from continents to oceans. The accumulation of carbonate sediments on continents is determined by areas of epicontinental seas. Significant role in the history of oceanic carbonate sedimentation is played by the nutrient fluxes from continents into the World Ocean. Subduction and evolution of the carbonate compensation depth (CCD) play significant role in calculating the quantitative parameters of carbonate accumulation in ocean.



Interaction of Rh(III) with Humic Acids and Components of Natural Adsorption Phases
Аннотация
To study the migration and accumulation of Rh(III) in natural systems, we have synthesized complexes of Rh(III) and fulvic acids (FA), which are dominant organic compounds of natural waters. The composition of rhodium hydroxofulvate complexes is determined at pH 7.0, and the stability constant of these complexes is calculated. Data are obtained on interaction of FA and Rh(III) hydroxofulvate complexes with components of naturally occurring reactive barriers (ferrihydrite, quartzite, clay shale, and natural aluminosilicate suspensions) at pH 4.0–8.0. The adsorption behavior of FA and rhodium fulvate complexes at the sorbents was determined to be analogous.



Organic Matter of the Salt Sequence in the Southern Part of the Yakshinskoe Potassium–Magnesium Salt Deposit
Аннотация
Organic component in the Lower Permian salt sequence in the southern part of the Yakshinskoe deposit of the Upper Pechora potassium basin is represented by dispersed organic matter, liquid hydrocarbons in fluid inclusions in halite, as well as inclusions of bacterium, algae, spore and pollen of plants. Analysis of saturated and aromatic bitumen fractions from salts, halopelites, and clayey–silty interbeds revealed the presence of organic matter of type II and mixed type II–III. It is shown that the cover sequence and potassium bed from the southern part of the Yakshinskoe potassium–magnesium salt deposit contain autochthonous immature organic matter, whereas underlying rock salt and host rocks contain significant amount of immature allochthonous components. These migration hydrocarbons are likely immature condensates.



Short Communications
Genesis of Oils in Eastern Kamchatka: Evidence from Hydrocarbon Biomarkers
Аннотация
Gas chromatography and gas chromatography–mass spectrometry data on oils from wells and seeps in the Eastern Kamchatka Basin indicate that, according to their composition and the distributions of biomarker molecules, these oils can be classified into three groups, which differ in the composition of the parent organic matter, litho–facies sedimentation conditions, and catagenetic transformations. Oils from the wells were determined to be produced by organic matter of the sapropel type of marine facies in the main oil window (MC2). Condensate from the natural seep was generated at higher catagenesis grades (MC2–3) by organic matter of the sapropel–humus type of littoral facies. Uzon oil shows are demonstrated to be formed in a continental environment by organic matter of the humus–sapropel type and were not genetically related to oil from the Paleogene–Neogene source rocks of the Bogachevka Formation.



Fractionation of Colloidal Matter of Stratal Waters during Deep Burial of Radioactive Wastes
Аннотация
The paper presents ultrafiltration and microscopic study of colloidal matter from radioactive waste disposal site at the Siberian Chemical Plant. It is established that most part of actinides (55–90%) are mainly bonded to colloidal particles, whereas only 20% natural uranium are bonded to >5–µm particles at the background site. In general, the retention of transuranium elements (TUE) from contaminated waters by membranes with pore size from 200 to 5 nm increases with increase of anthropogenic uranium content in water


