The Role of miR-34a in Predicting the Efficacy of Immunotherapy in Clear Cell Renal Cell Carcinoma
- Authors: Asadullina D.D1,2, Izmailov A.A3, Popova E.V3, Ivanova E.A4, Izmaylova S.M2, Pavlov V.N2, Khusnutdinova E.K1, Gilyazova I.R1,2
-
Affiliations:
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Bashkir State Medical University
- Republican Clinical Oncologic Dispensary
- Ufa University of Science and Technology
- Issue: Vol 61, No 12 (2025)
- Pages: 90-99
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://ogarev-online.ru/0016-6758/article/view/362713
- DOI: https://doi.org/10.7868/S3034510325120097
- ID: 362713
Cite item
Abstract
About the authors
D. D Asadullina
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Email: dilara.asadullina@yandex.ru
Ufa, Russia; Ufa, Russia
A. A Izmailov
Republican Clinical Oncologic DispensaryUfa, Russia
E. V Popova
Republican Clinical Oncologic DispensaryUfa, Russia
E. A Ivanova
Ufa University of Science and TechnologyUfa, Russia
S. M Izmaylova
Bashkir State Medical UniversityUfa, Russia
V. N Pavlov
Bashkir State Medical UniversityUfa, Russia
E. K Khusnutdinova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of SciencesUfa, Russia
I. R Gilyazova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Email: gilyasova_irina@mail.ru
Ufa, Russia; Ufa, Russia
References
- Chen C., Liu T.S., Zhao S.C. et al. XIAP impairs mitochondrial function during apoptosis by regulating the Bcl-2 family in renal cell carcinoma // Experim. and Therap. Medicine. 2018. V. 15. № 5. P. 4587–4593. https://doi.org/10.3892/etm.2018.5974
- Cortez M.A., Ivan C., Valdecanas D. et al. PDL1 Regulation by p53 via miR-34 // J. Nat. Cancer Institute. 2016. V. 108. № 1. https://doi.org/10.1093/jnci/djv303
- Chen L., Gibbons D.L., Goswami S. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression // Nature Communications. 2014. V. 5. № 1. P. 5241. https://doi.org/10.1038/ncomms6241
- Ivanova E., Asadullina D., Gilyazova G. et al. Exosomal microRNA levels associated with immune checkpoint inhibitor therapy in clear cell renal cell carcinoma // Biomedicines. 2023. V. 11. № 3. https://doi.org/10.3390/biomedicines11030801
- Cui M., Wang H., Yao X. et al . Circulating micro-RNAs in cancer: Potential and challenge // Front. in Genetics. 2019. V. 10. https://doi.org/10.3389/fgene.2019.00626
- Zabeti Touchaei A., Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways // Cancer Cell Int. 2024. V. 24. № 1. P. 102. https://doi.org/10.1186/s12935-024-03293-6
- Shadbad M.A., Asadzadeh Z., Derakhshani A. et al. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery // Biomedicine & Pharmacotherapy. 2021. V. 143. https://doi.org/10.1016/j.biopha.2021.112213
- Yadav R., Khatkar R., Yap K.C.-H. et al. The miRNA and PD-1/PD-L1 signaling axis: An arsenal of immunotherapeutic targets against lung cancer // Cell Death Discovery. 2024. V. 10. № 1. P. 414. https://doi.org/10.1038/s41420-024-02182-1
- Kim J. Identification of microRNAs as diagnostic biomarkers for breast cancer based on the Cancer Genome Atlas // Diagnostics. 2021. V. 11. № 1. https://doi.org/10.3390/diagnostics11010107
- Zhang H., Li M., Kaboli P.J. et al. Identification of cluster of differentiation molecule-associated microRNAs as potential therapeutic targets for gastrointestinal cancer immunotherapy // Int. J. Biol. Markers. 2021. V. 36. № 2. P. 22–32. https://doi.org/10.1177/17246008211005473
- Wei S., Wang K., Huang X. et al. LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis // Int. J. Immunopathol. and Pharmacol. 2019. V. 33. https://doi.org/10.1177/2058738419859699
- Okada N., Lin C.-P., Ribeiro M.C. et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression // Genes & Development. 2014. V. 28. № 5. P. 438–450. https://doi.org/10.1101/gad.233585.113
- Li W. (Jess), Wang Y., Liu R. et al. MicroRNA-34a: Potent tumor suppressor, cancer stem cell Inhibitor, and potential anticancer therapeutic // Front. in Cell and Developmental Biology. 2021. V. 9. https://doi.org/10.3389/fcell.2021.640587
- Smolle M.A., Calin H.N., Pichler M. et al. Noncoding RNA s and immune checkpoints – clinical implications as cancer therapeutics // The FEBS J. 2017. V. 284. № 13. P. 1952–1966. https://doi.org/10.1111/febs.14030
- Basak S.K., Veena M.S., Oh S. et al. The CD44high tumorigenic subsets in lung cancer biospecimens are enriched for low miR-34a expression // PLoS One. 2013. V. 8. № 9. https://doi.org/10.1371/journal.pone.0073195
- Yadav R., Khatkar R., Yap K.C.-H. et al. The miRNA and PD-1/PD-L1 signaling axis: An arsenal of immunotherapeutic targets against lung cancer // Cell Death Discovery. 2024. V. 10. № 1. P. 414. https://doi.org/10.1038/s41420-024-02182-1
- Ghandadi M., Sahebkar A. MicroRNA-34a and its target genes: Key factors in cancer multidrug resistance // Current Pharmaceutical Design. 2016. V. 22. № 7. P. 933–939. https://doi.org/10.2174/1381612822666151209153729
- Monastirioti A., Papadaki C., Kalapanida D. et al. Plasma-based microRNA expression analysis in advanced stage NSCLC patients treated with nivolumab // Cancers. 2022. V. 14. № 19. https://doi.org/10.3390/cancers14194739
- Li H., Yu G., Shi R. et al. Cisplatin-induced epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy // Mol. Cancer. 2014. V. 13. № 1. https://doi.org/10.1186/1476-4598-13-8
- Vinall R.L., Ripoll A.Z., Wang S. et al. W. MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53– Rb pathway status // Int. J. Cancer. 2012. V. 130. № 11. P. 2526–2538. https://doi.org/10.1002/ijc.26256
- Li L., Yuan L., Luo J. et al. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1 // Clin. and Experim. Medicine. 2013. V. 13. № 2. P. 109–117. https://doi.org/10.1007/s10238-012-0186-5
- Li X., Ji M., Zhong S. et al. MicroRNA-34a Modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1 // Arch. Med. Res. 2012. V. 43. № 7. P. 514–521. https://doi.org/10.1016/j.arcmed.2012.09.007
- Park E.Y., Chang E., Lee E.J. et al. Targeting of miR34a–NOTCH1 axis reduced breast cancer stemness and chemoresistance // Cancer Research. 2014. V. 74. № 24. P. 7573–7582. https://doi.org/10.1158/0008-5472.CAN-14-1140
- Cao W., Yang W., Fan R. et al. miR-34a regulates cisplatin-induce gastric cancer cell death by modulating PI3K/AKT/survivin pathway // Tumor Biology. 2014. V. 35. № 2. P. 1287–1295. https://doi.org/10.1007/s13277-013-1171-7
- Weeraratne S.D., Amani V., Neiss A. et al. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma // Neuro-Oncology. 2011. V. 13. № 2. P. 165–175. https://doi.org/10.1093/neuonc/noq179
- Mortensen M.M., Høyer S., Ørntoft T.F. et al. High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy // BMC Cancer. 2014. V. 14. № 1. https://doi.org/10.1186/1471-2407-14-859
- Zhou J.-Y., Chen X., Zhao J. et al. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET // Cancer Letters. 2014. V. 351. № 2. P. 265–271. https://doi.org/10.1016/j.canlet.2014.06.010
- Yang F., Li Q., Gong Z. et al. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment // Technol. in Cancer Res. & Treatment. 2014. V. 13. № 1. P. 77–86. https://doi.org/10.7785/tcrt.2012.500364
- Corcoran C., Rani S., O’Driscoll L. MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression // The Prostate. 2014. V. 74. № 13. P. 1320–1334. https://doi.org/10.1002/pros.22848
- Kojima K., Fujita Y., Nozawa Y. et al. MiR-34a attenuates paclitaxel–esistance of hormone–refractory prostate cancer PC3 cells through direct and indirect mechanisms // The Prostate. 2010. V. 70. № 14. P. 1501–1512. https://doi.org/10.1002/pros.21185
- Ji Q., Hao X., Zhang M. et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells // PLoS One. 2009. V. 4. № 8. https://doi.org/10.1371/journal.pone.0006816
- Naor D., Nedvetzki S., Golan I. et al. CD44 in cancer // Critical Rev. in Clin. Labor. Sci. 2002. V. 39. № 6. P. 527–579. https://doi.org/10.1080/10408360290795574
- Deng C.-X. SIRT1, is it a tumor promoter or tumor suppressor? // Int. J. Biol. Sci. 2009. V. 5. № 2. P. 147–152. https://doi.org/10.7150/ijbs.5.147
- Kim H.-B., Lee S.-H., Um J.-H. et al. Sensitization of chemo-resistant human chronic myeloid leukemia stem-like cells to Hsp90 inhibitor by SIRT1 inhibition // Int. J. Biol. Sci. 2015. V. 11. № 8. P. 923–934. https://doi.org/10.7150/ijbs.10896
- Akao Y., Noguchi S., Iio A. et al. Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells // Cancer Letters. 2011. V. 300. № 2. P. 197–204. https://doi.org/10.1016/j.canlet.2010.10.006
- Fujita Y., Kojima K., Hamada N. et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells // Biochem. and Biophys. Res. Communications. 2008. V. 377. № 1. P. 114–119. https://doi.org/10.1016/j.bbrc.2008.09.086
- Wang X., Dong K., Gao P. et al. MicroRNA-34a sensitizes lung cancer cell lines to DDP treatment independent of p53 status // Cancer Biotherapy and Radiopharmaceuticals. 2013. V. 28. № 1. P. 45–50. https://doi.org/10.1089/cbr.2012.1218
- Lai M., Du G., Shi R. et al. MiR-34a inhibits migration and invasion by regulating the SIRT1/p53 pathway in human SW480 cells // Mol. Med. Reports. 2015. V. 11. № 5. P. 3301–3307. https://doi.org/10.3892/mmr.2015.3182
- Fan Y.N., Meley D., Pizer B. et al. Mir-34a mimics are potential therapeutic agents for p53-mutated and chemo-resistant brain tumour cells // PLoS One. 2014. V. 9. № 9. https://doi.org/10.1371/journal.pone.0108514
- Kiss B., Skuginna V., Fleischmann A. et al. Bcl-2 predicts response to neoadjuvant chemotherapy and is overexpressed in lymph node metastases of urothelial cancer of the bladder // Urologic Oncology: Seminars and Original Investigations. 2015. V. 33. № 4. P. 166.e1–166.e8. https://doi.org/10.1016/j.urolonc.2014.12.005
- Sezgin Alikanoglu A., Yildirim M., Suren D. et al. Expression of cyclooxygenase-2 and Bcl-2 in breast cancer and their relationship with triple-negative disease // J. Official Balkan Union of Oncol. 2014. V. 19. № 2. P. 430–434.
- Fleischmann A., Huland H., Mirlacher M. et al. Prognostic relevance of Bcl-2 overexpression in surgically treated prostate cancer is not caused by increased copy number or translocation of the gene // The Prostate. 2012. V. 72. № 9. P. 991–997. https://doi.org/10.1002/pros.21504
- Karnak D., Xu L. Chemosensitization of prostate cancer by modulating Bcl-2 family proteins // Current Drug Targets. 2010. V. 11. № 6. P. 699–707. https://doi.org/10.2174/138945010791170888
- Bauer C., Hees C., Sterzik A. et al. Proapoptotic and antiapoptotic proteins of the Bcl-2 family regulate sensitivity of pancreatic cancer cells toward gemcitabine and T-cell–mediated cytotoxicity // J. Immunotherapy. 2015. V. 38. № 3. P. 116–126. https://doi.org/10.1097/CJI.0000000000000073
- Wang H., Zhang Z., Wei X. et al. Small-molecule inhibitor of Bcl-2 (TW-37) suppresses growth and enhances cisplatin-induced apoptosis in ovarian cancer cells // J. Ovarian Res. 2015. V. 8. № 1. P. 3. https://doi.org/10.1186/s13048-015-0130-x
- Lin X., Guan H., Huang Z. et al. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis // J. Diabetes Res. 2014. V. 2014. P. 1–7. https://doi.org/10.1155/2014/258695
- Mao S., Sun Q., Xiao H. et al. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2 // Protein & Cell. 2015. V. 6. № 7. P. 529–540. https://doi.org/10.1007/s13238-015-0168-y
- Chen H., Wang J., Hu B. et al. MiR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2 // Mol. and Cell. Biochemistry. 2015. V. 406. № 1–2. P. 21–30. https://doi.org/10.1007/s11010-015-2420-4
- Chakraborty S., Mazumdar M., Mukherjee S. et al. Restoration of p53/miR–34a regulatory axis decreases survival advantage and ensures Bax–dependent apoptosis of non–small cell lung carcinoma cells // FEBS Letters. 2014. V. 588. № 4. P. 549–559. https://doi.org/10.1016/j.febslet.2013.11.040
Supplementary files


