Present-Day Computer-Aided Primer Designing Tools for Non-Coding RNA
- Authors: Yanishevskaya M.A1,2, Blinova E.A1,2
-
Affiliations:
- Southern Urals Federal Research and Clinical Center for Medical Biophysics of the FMBA
- Chelyabinsk State University
- Issue: Vol 61, No 12 (2025)
- Pages: 20–30
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://ogarev-online.ru/0016-6758/article/view/362706
- DOI: https://doi.org/10.7868/S3034510325120026
- ID: 362706
Cite item
Abstract
About the authors
M. A Yanishevskaya
Southern Urals Federal Research and Clinical Center for Medical Biophysics of the FMBA; Chelyabinsk State University
Email: yanishevskaya@urcrm.ru
Chelyabinsk, Russia; Chelyabinsk, Russia
E. A Blinova
Southern Urals Federal Research and Clinical Center for Medical Biophysics of the FMBA; Chelyabinsk State UniversityChelyabinsk, Russia; Chelyabinsk, Russia
References
- Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. V. 75. № 5. P. 843–854. https://doi.org/10.1016/0092-8674(93)90529-y
- Ha M., Kim V.N. Regulation of microRNA biogenesis // Nat. Rev. Mol. Cell Biol. 2014. V. 15. № 8. P. 509–524. https://doi.org/10.1038/nrm3838
- Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs // Genome Res. 2009. V. 19. № 1. P. 92–105. https://doi.org/10.1101/gr.082701.108
- Jang J.H., Lee T.J. The role of microRNAs in cell death pathways // Yeungnam Univ. J. Med. 2021. V. 38. № 2. P. 107–117. https://doi.org/10.12701/yujm.2020.00836
- Avraham R., Yarden Y. Regulation of signalling by microRNAs // Biochem. Soc. Trans. 2012. V. 40. № 1. P. 26–30. https://doi.org/10.1042/BST20110623
- Khameneh S.C., Razi S., Lashanizadegan R. et al. MicroRNA-mediated metabolic regulation of immune cells in cancer: An updated review // Front Immunol. 2024. V. 15. https://doi.org/10.3389/fimmu.2024.1424909
- Kunze-Schumacher H., Krueger A. The role of microRNAs in development and function of regulatory T cells – lessons for a better understanding of microRNA biology // Front. Immunol. 2020. V. 11. P. 2185. https://doi.org/10.3389/fimmu.2020.02185
- Bao N., Lye K.W., Barton M.K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome // Dev. Cell. 2004. V. 7. № 5. P. 653–662. https://doi.org/10.1016/j.devcel.2004.10.003
- Searles C.D. MicroRNAs and cardiovascular disease risk // Curr. Cardiol. Rep. 2024. V. 26. № 2. P. 51–60. https://doi.org/10.1007/s11886-023-02014-1
- Junn E., Mouradian M.M. MicroRNAs in neurodegenerative diseases and their therapeutic potential // Pharmacol. Ther. 2012. V. 133. № 2. P. 142–150. https://doi.org/10.1016/j.pharmthera.2011.10.002
- Chakrabortty A., Patton D.J., Smith B.F., Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer // Genes (Basel). 2023. V. 14. № 7. P. 1375. https://doi.org/10.3390/genes14071375
- Untergasser A., Cutcutache I., Koressaar T. et al. Primer3-new capabilities and interfaces // Nucl. Acids Res. 2012. V. 40. № 15. P. e115. https://doi.org/10.1093/nar/gks596
- Ye J., Coulouris G., Zaretskaya I. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. V. 13. P. 134. https://doi.org/10.1186/1471-2105-13-134
- Li L.C. Designing PCR primer for DNA methylation mapping // Methods Mol. Biol. 2007. V. 402. P. 371–384. https://doi.org/10.1007/978-1-59745-528-2_19
- Singh A., Pandey G.K. Primer design using Primer Express® for SYBR Green-based quantitative PCR // Methods Mol. Biol. 2015. V. 1275. P. 153–164. https://doi.org/10.1007/978-1-4939-2365-6_11
- Lim L.P., Lau N.C., Weinstein E.G. et al. The microRNAs of Caenorhabditis elegans // Genes Dev. 2003. V. 17. P. 991–1008. https://doi.org/10.1101/gad.1074403
- Pena J.T., Sohn-Lee C., Rouhanifard S.H. et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues // Nat. Methods. 2009. V. 6. P. 139–141. https://doi.org/10.1038/nmeth.1294
- Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs // Science. 2001. V. 294. P. 853–858. https://doi.org/10.1126/science.1064921
- Chen J., Lozach J., Garcia E.W. et al. Highly sensitive and specific microRNA expression profiling using BeadArray technology // Nucl. Acids Res. 2008. V. 36. № 14. P. e87. https://doi.org/10.1093/nar/gkn387
- Krichevsky A.M., King K.S., Donahue C.P. et al. A microRNA array reveals extensive regulation of microRNAs during brain development // RNA. 2004. V. 9. № 10. P. 1274–1281. https://doi.org/10.1261/rna.5980303
- Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers // BMC Biotechnol. 2011. V. 11. P. 70. https://doi.org/10.1186/1472-6750-11-70
- Chen C., Ridzon D.A., Broomer A.J. et al. Real-time quantification of microRNAs by stem-loop RT-PCR // Nucl. Acids Res. 2005. V. 33. № 20. P. e179. https://doi.org/10.1093/nar/gni178
- Shi R., Chiang V.L. Facile means for quantifying microrRNA expression by real-time PCR // BioTechniques. 2005. V. 39. № 4. P. 519–525. https://doi.org/10.2144/000112010
- Kramer M.F. Stem-loop RT-qPCR for miRNAs // Curr. Protoc. Mol. Biol. 2011. Chapter 15: Unit15.10. https://doi.org/10.1002/0471142727.mb1510s95
- Yang L.H., Wang S.L., Tang L.L. et al. Universal stem-loop primer method for screening and quantification of microRNA // PLoS One. 2014. V. 9. № 12. https://doi.org/10.1371/journal.pone.0115293
- Wang Y., Zhou J., Chen Y. et al. Quantification of distinct let-7 microRNA family members by a modified stem-loop RT-qPCR // Mol. Med. Rep. 2018. V. 17. № 3. P. 3690–3696. https://doi.org/10.3892/mmr.2017.8297
- Varkonyi-Gasic E., Wu R., Wood M. et al. Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs // Plant Methods. 2007. V. 3. P. 12. https://doi.org/10.1186/1746-4811-3-12
- Kang S.T., Hsieh Y.S., Feng C.T. et al. miPrimer: An empirical-based qPCR primer design method for small noncoding microRNA // RNA. 2018. V. 24. № 3. P. 304–312. https://doi.org/10.1261/rna.061150.117
- Guido N., Starostina E., Leake D., Saaem I. Improved PCR amplification of broad spectrum GC DNA templates // PLoS One. 2016. V. 11. № 6. https://doi.org/10.1371/journal.pone.0156478
- Rhim J., Baek W., Seo Y., Kim J.H. From molecular mechanisms to therapeutics: Understanding micro-RNA-21 in cancer // Cells. 2022. V. 11. № 18. P. 2791.https://doi.org/10.3390/cells11182791
- He F., Guan W. The role of miR-21 as a biomarker and therapeutic target in cardiovascular disease // Clin. Chim. Acta. 2025. https://doi.org/10.1016/j.cca.2025.120304
- Kumarswamy R., Volkmann I., Thum T. Regulation and function of miRNA-21 in health and disease // RNA Biol. 2011. V. 8. № 5. P. 706–713. https://doi.org/10.4161/rna.8.5.16154
- Busk P.K. A tool for design of primers for micro-RNA-specific quantitative RT-qPCR // BMC Bioinformatics. 2014. V. 15. P. 29. https://doi.org/10.1186/1471-2105-15-29
- Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers // BMC Biotechnol. 2011. V. 11. P. 70. https://doi.org/10.1186/1472-6750-11-70
- Vester B., Wengel J. LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA // Biochemistry. 2004. V. 43. № 42. P. 13233–13241. https://doi.org/10.1021/bi0485732
- Xie S., Zhu Q., Qu W. et al. sRNAPrimerDB: Comprehensive primer design and search web service for small non-coding RNAs // Bioinformatics. 2019. V. 35. № 9. P. 1566–1572. https://doi.org/10.1093/bioinformatics/bty852
- UPL (2017). Universal Probe Library. https://lifescience.roche.com/en_in/brands/universal-probe-library.html.05/06/2017
- Czimmerer Z., Hulvely J., Simandi Z. et al. A Versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules // PLoS One. 2013. V. 8. № 1. P. e55168. https://doi.org/10.1371/journal.pone.0055168
Supplementary files


