Bacterial Biofilms as a Reservoir of Amyloids Formed Through Specific and Nonspecific Mechanisms
- Authors: Nizhnikov A.A.1,2
-
Affiliations:
- Saint Petersburg State University
- All-Russian Research Institute of Agricultural Microbiology
- Issue: Vol 61, No 11 (2025)
- Pages: 232–242
- Section: МИКРОБИОЛОГИЯ
- URL: https://ogarev-online.ru/0016-6758/article/view/361201
- DOI: https://doi.org/10.7868/S3034510325110236
- ID: 361201
Cite item
Abstract
Amyloids are protein aggregates with fibrillar morphology and a characteristic spatial structure called “cross-β”. Amyloids have been known for over 150 years, and many of them are associated with the development of predominantly incurable human diseases called amyloidoses, some of which including Alzheimer’s disease are of high social significance. At the turn of the 21st century, it was established that amyloids not only result from protein folding disorders but are involved in performing biological functions in of all three domains of the living world: archaea, bacteria, and eukaryotes including humans. The greatest diversity of functional amyloids has been described in bacteria in which these protein aggregates are involved mainly in the processes of biofilm formation that play an important role in the development of bacterial infections and antibiotic resistance. Amyloid fibrils represent an important structural component of the biofilm matrix in various groups of bacteria. Although some bacterial amyloids are formed by specific secretion and assembly systems, the mechanisms of formation of another group of bacterial amyloids, including amyloid states of outer membrane proteins and components of the translation apparatus, are unclear. Current evidence suggests that more general, “non-specific” mechanisms, including regulated cell death during biofilm development, may be involved in the formation of such amyloids.
About the authors
A. A. Nizhnikov
Saint Petersburg State University; All-Russian Research Institute of Agricultural Microbiology
Email: a.nizhnikov@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Pushkin, Russia
References
- Sunde M., Serpell L.C., Bartlam M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction // J. Mol. Biol. 1997. V. 273. P. 729–739. https://doi.org/10.1006/jmbi.1997.1348
- Iadanza M.G., Jackson M.P., Hewitt E.W. et al. A new era for understanding amyloid structures and diseas // Nat. Rev. Mol. Cell Biol. 2018. V. 19. P. 755–773. https://doi.org/10.1038/s41580-018-0060-8
- Selkoe D., Ihara Y., Salazar F. Alzheimer’s disease: Insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea // Science. 1982. V. 215. P. 1243–1245. https://doi.org/10.1126/science.6120571
- Bellinger-Kawahara C., Diener T.O., McKinley M.P. et al. Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids // Virology. 1987. V. 160. P. 271–274. https://doi.org/10.1016/0042-6822(87)90072-9
- Saunders S.E., Bartelt-Hunt S.L., Bartz J.C. Prions in the environment: occurrence, fate and mitigation // Prion. 2008. V. 2. P. 162–169. https://doi.org/10.4161/pri.2.4.7951
- Virchow R. Ueber eine im Gehirn und ruckenmark des menschen aufgefunde substanz mit der chemishen reaction der cellulose // Virchows Arch. Path. Anat. Physiol. 1854. V. 6. P. 135–138.
- Sipe J.D., Cohen A.S. Review: History of the amyloid fibril // J. Struct. Biol. 2000. V. 130. P. 88–98. https://doi.org/10.1006/jsbi.2000.4221
- Kyle R.A. Amyloidosis: A convoluted story // Br. J. Haematol. 2001. V. 114. P. 529–538. https://doi.org/10.1046/j.1365-2141.2001.02999.x
- Buxbaum J.N., Dispenzieri A., Eisenberg D.S. et al. Amyloid nomenclature 2022: Update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee // Amyloid. 2022. V. 29. P. 213–219. https://doi.org/10.1080/13506129.2022.2147636
- Ano Bom A.P., Rangel L.P., Costa D.C. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: Implications for cancer // J. Biol. Chem. 2012. V. 287. P. 28152–28162. https://doi.org/10.1074/jbc.M112.340638
- Ghosh S., Salot S., Sengupta S. et al. p53 amyloid formation leading to its loss of function: Implications in cancer pathogenesis // Cell Death Differ. 2017. V. 24. P. 1784–1798. https://doi.org/10.1038/cdd.2017.105
- Sengupta S., Singh N., Paul A. et al. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form // J. Cell Sci. 2023. V. 136. https://doi.org/10.1242/jcs.261017
- Bolton D.C., McKinley M.P., Prusiner S.B. Identification of a protein that purifies with the scrapie prion // Science. 1982. V. 218. P. 1309–1311. https://doi.org/10.1126/science.6815801
- Prusiner S.B. Prions // PNAS USA. 1998. V. 95. P. 13363–13383. https://doi.org/10.1073/pnas.95.23.13363
- Nizhnikov A.A., Antonets K.S., Inge-Vechtomov S.G. Amyloids: From pathogenesis to function // Biochemistry (Moscow). 2015. V. 80 (9). P. 1127–1144. https://doi.org/10.1134/S0006297915090047
- Maji S.K., Perrin M.H., Sawaya M.R. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules // Science. 2009. V. 325. P. 328–332. https://doi.org/10.1126/science.1173155
- Fowler D.M., Koulov A.V., Alory-Jost C. et al. Functional amyloid formation within mammalian tissue // PLoS Biol. 2006. V. 4. https://doi.org/10.1371/journal.pbio.0040006
- Antonets K.S., Belousov M.V., Sulatskaya A.I. et al. Accumulation of storage proteins in plant seeds is mediated by amyloid formation // PLoS Biol. 2020. V. 18. https://doi.org/10.1371/journal.pbio.3000564
- Antonets K.S., Nizhnikov A.A. Predicting amyloidogenic proteins in the proteomes of plants // Int. J. Mol. Sci. 2017. V. 18. № 10. https://doi.org/10.3390/ijms18102155
- Sulatsky M.I., Belousov M.V., Kosolapova A.O. et al. Amyloid fibrils of Pisum sativum L. vicilin inhibit pathological aggregation of mammalian proteins // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms241612932
- Chapman M.R., Robinson L.S., Pinkner J.S. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation // Science. 2002. V. 295. P. 851–855. https://doi.org/10.1126/science.1067484
- Hung C., Zhou Y., Pinkner J.S. et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure // MBio. 2013. V. 4. https://doi.org/10.1128/mBio.00645-13
- Van Gerven N., Van der Verren S.E., Reiter D.M., Remaut H. The Role of functional amyloids in bacterial virulence // J. Mol. Biol. 2018. V. 430. P. 3657–3684. https://doi.org/10.1016/j.jmb.2018.07.010
- Penesyan A., Paulsen I.T., Kjelleberg S., Gillings M.R. Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity // NPJ Biofilms Microbiomes. 2021. V. 7. № 1. P. 80. https://doi.org/10.1038/s41522-021-00251-2
- Perry E.K., Tan M.-W. Bacterial biofilms in the human body: Prevalence and impacts on health and disease // Front. Cell. Infect. Microbiol. 2023. V. 13. https://doi.org/10.3389/fcimb.2023.1237164
- Flemming H.-C., Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms // Nat. Rev. Microbiol. 2019. V. 17. P. 247–260. https://doi.org/10.1038/s41579-019-0158-9
- Zhao A., Sun J., Liu Y. Understanding bacterial biofilms: From definition to treatment strategies // Front. Cell. Infect. Microbiol. 2023. V. 13. https://doi.org/10.3389/fcimb.2023.1137947
- Liu H.Y., Prentice E.L., Webber M.A. Mechanisms of antimicrobial resistance in biofilms // NPJ Antimicrob. Resist. 2024. V. 2. P. 27. https://doi.org/10.1038/s44259-024-00046-3
- Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body // PLoS Biol. 2016. V. 14. https://doi.org/10.1371/journal.pbio.1002533
- Buret A.G., Allain T. Gut microbiota biofilms: From regulatory mechanisms to therapeutic targets // J. Exp. Med. 2023. V. 220. https://doi.org/10.1084/jem.20221743
- Fayoud H., Belousov M.V., Antonets K.S., Nizhnikov A.A. Pathogenesis-associated bacterial amyloids: The network of interactions // Biochemistry (Moscow). 2024. V. 89. P. 2107–2132. https://doi.org/10.1134/S0006297924120022
- Dueholm M.S., Petersen S.V., Sønderkær M. et al. Functional amyloid in pseudomonas // Mol. Microbiol. 2010. V. 77. P. 1009–1020. https://doi.org/10.1111/j.1365-2958.2010.07269.x
- Rouse S.L., Matthews S.J., Dueholm M.S. Ecology and biogenesis of functional amyloids in Pseudomonas // J. Mol. Biol. 2018. V. 430. № 20. P. 3685–3695. https://doi.org/10.1016/j.jmb.2018.05.004
- Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection // Proc. Natl Acad. Sci. USA. 2007. V. 104. P. 5145–5150. https://doi.org/10.1073/pnas.0602304104
- Taglialegna A., Navarro S., Ventura S. et al. Staphylococcal bap proteins build amyloid scaffold biofilm matrices in response to environmental signals // PLoS Pathog. 2016. V. 12. https://doi.org/10.1371/journal.ppat.1005711
- Dutta A., Bhattacharyya S., Kundu A. et al. Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein // Biophys. Chem. 2016. V. 217. P. 32–41. https://doi.org/10.1016/j.bpc.2016.07.006
- Wang Y., Jiang J., Gao Y. et al. Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent with its function as a scaffolding protein in biofilms // J. Biol. Chem. 2018. V. 293. P. 14296–14311. https://doi.org/10.1074/jbc.RA118.002448
- Yarawsky A.E., Johns S.L., Schuck P., Herr A.B. The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers // J. Biol. Chem. 2020. V. 295. № 14. P. 4411–4427. https://doi.org/10.1074/jbc.RA119.010874
- Besingi R.N., Wenderska I.B., Senadheera D.B. et al. Functional amyloids in streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c // Microbiology. 2017. V. 163. P. 488–501. https://doi.org/10.1099/mic.0.000443
- Di Cologna N.M., Samaddar S., Valle C.A. et al. Amyloid aggregation of Streptococcus mutans Cnm inf luences its collagen-binding activity // Appl. Environ. Microbiol. 2021. V. 87. https://doi.org/10.1128/AEM.01149-21
- Taglialegna A., Matilla-Cuenca L., Dorado-Morales P. et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers // NPJ Biofilms Microbiomes. 2020. V. 6. № 1. P. 15. https://doi.org/10.1038/s41522-020-0125-2
- Markande A.R., Nerurkar A.S. Bioemulsifier (BEAM1) produced by Solibacillus silvestris AM1 is a functional amyloid that modulates bacterial cell-surface properties // Biofouling. 2016. V. 32. P. 1153–1162. https://doi.org/10.1080/08927014.2016.1232716
- Joseph Sahaya Rajan J., Chinnappan Santiago T., Singaravel R., Ignacimuthu S. Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid // Biotechnol. Lett. 2016. V. 38. P. 689–700. https://doi.org/10.1007/s10529-015-2025-8
- Belousov M.V., Kosolapova A.O., Fayoud H. et al. OmpC and OmpF outer membrane proteins of Escherichia coli and Salmonella enterica form bona fide amyloids // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms242115522
- Montes García J.F., Vaca S., Delgado N.L. et al. Mannheimia haemolytica OmpP2-like is an amyloidlike protein, forms filaments, takes part in cell adhesion and is part of biofilms // Antonie Van Leeuwenhoek. 2018. V. 111. № 12. P. 2311–2321. https://doi.org/10.1007/s10482-018-1122-9
- Kosolapova A.O., Belousov M.V., Sulatskaya A.I. et al. Two novel amyloid proteins, ropA and ropB, from the root nodule bacterium Rhizobium leguminosarum // Biomolecules. 2019. V. 9. № 11. https://doi.org/10.3390/biom9110694
- Kosolapova A.O., Belousov M.V., Sulatsky M.I. et al. RopB protein of Rhizobium leguminosarum bv. viciae adopts amyloid state during symbiotic interactions with pea (Pisum sativum L.) // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1014699
- López-Ochoa J., Montes-García J.F., Vázquez C. et al. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms // J. Microbiol. 2017. V. 55. P. 745–752. https://doi.org/10.1007/s12275-017-7077-0
- Shahnawaz M., Park K.W., Mukherjee A. et al. Prionlike characteristics of the bacterial protein Microcin E492 // Sci. Rep. 2017. V. 7. P. 1–16. https://doi.org/10.1038/srep45720
- Bavdek A., Kostanjšek R., Antonini V. et al. PH dependence of listeriolysin O aggregation and poreforming ability // FEBS J. 2012. V. 279. P. 126–141. https://doi.org/10.1111/j.1742-4658.2011.08405.x
- Schwartz K., Syed A.K., Stephenson R.E. et al. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms // PLoS Pathog. 2012. V. 8. https://doi.org/10.1371/journal.ppat.1002744
- Admane N., Kothandan R., Biswas S. Amyloid transformations of phenol soluble modulin α1 in Staphylococcus aureus and their modulation deploying a prenylated chalcone // Sci. Rep. 2024. V. 14. https://doi.org/10.1038/s41598-024-69344-0
- Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Varadi M., Bertoni D., Magana P. et al. AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences // Nucl. Acids Res. 2024. V. 52. D368–D375. https://doi.org/10.1093/nar/gkad1011
- Pinto R.M., Soares F.A., Reis S. et al. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms // Front. Microbiol. 2020. V. 11. https://doi.org/10.3389/fmicb.2020.00952
- Reichhardt C., Cegelski L. Solid-state NMR for bacterial biofilms // Mol. Phys. 2014. V. 112. P. 887–894. https://doi.org/10.1080/00268976.2013.837983
- Akbey Ü., Andreasen M. Functional amyloids from bacterial biofilms – structural properties and interaction partners // Chem. Sci. 2022. V. 13. № 22. https://doi.org/10.1039/d2sc00645f
- Munhoz D.D., Amanda C.R., Fernanda F.S. et al. E. coli common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments // Gut Microbes. 2023. V. 15. https://doi.org/10.1080/19490976.2023.2190308
- Subedi S., Sasidharan S., Nag N. et al. Amyloid crossseeding: mechanism, implication, and inhibition // Molecules. 2022. V. 27. https://doi.org/10.3390/molecules27061776
- Zhou Y., Smith D., Leong B.J. et al. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms // J. Biol. Chem. 2012. V. 287. P. 35092–35103. https://doi.org/10.1074/jbc.M112.383737
- Desai S., Sanghrajka K., Gajjar D. High adhesion and increased cell death contribute to strong biofilm formation in Klebsiella pneumoniae // Pathogens. 2019. V. 8. https://doi.org/10.3390/pathogens8040277
- Gallo P.M., Rapsinski G.J., Wilson R.P. et al. AmyloidDNA composites of bacterial biofilms stimulate autoimmunity // Immunity. 2015. V. 42. P. 1171–1184. https://doi.org/10.1016/j.immuni.2015.06.002
- Schwartz K., Ganesan M., Payne D.E. et al. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms // Mol. Microbiol. 2015. V. 99. P. 123–134. https://doi.org/10.1111/mmi.13219
- Tetz G., Tetz V. Bacterial extracellular DNA promotes β-amyloid aggregation // Microorganisms. 2021. V. 9. https://doi.org/10.3390/microorganisms9061301
- Tetz G., Pinho M., Pritzkow S. et al. Bacterial DNA promotes Tau aggregation // Sci. Rep. 2020. V. 10. P. 2369. https://doi.org/10.1038/s41598-020-59364-x
- Hollenbeck E.C., Antonoplis A., Chai C. et al. Phosphoethanolamine cellulose enhances curlimediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells // PNAS USA. 2018. V. 115. P. 10106–10111. https://doi.org/10.1073/pnas.1801564115
- Saldaña Z., Xicohtencatl-Cortes J., Avelino F. et al. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli // Env. Microbiol. 2009. V. 11. № 4. P. 992–1006. https://doi.org/10.1111/j.1462-2920.2008.01824.x
- Wei S., Li Y., Li K., Zhong C. Biofilm-inspired amyloid-polysaccharide composite materials // Appl. Mater. Today. 2022. V. 27. https://doi.org/10.1016/j.apmt.2022.101497
- Motamedi-Shad N., Monsellier E., Torrassa S. et al. Kinetic analysis of amyloid formation in the presence of heparan sulfate: Faster unfolding and change of pathway // J. Biol. Chem. 2009. V. 284. P. 29921–29934. https://doi.org/10.1074/jbc.M109.018747
- Iannuzzi C., Irace G., Sirangelo I. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity // Molecules. 2015. V. 20. P. 2510–2528. https://doi.org/10.3390/molecules20022510
- Torres-Bugeau C.M., Ávila C.L., Raisman-Vozari R. et al. Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in α-synuclein aggregation // J. Biol. Chem. 2012. V. 287. P. 2398–2409. https://doi.org/10.1074/jbc.M111.303503
- Díaz-Nido J., Wandosell F., Avila J. Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases // Peptides. 2002. V. 23. P. 1323–1332. https://doi.org/10.1016/s0196-9781(02)00068-2
- Gruys E., Ultee A., Upragarin N. Glycosaminoglycans are part of amyloid fibrils: Ultrastructural evidence in avian AA amyloid stained with cuprolinic blue and labeled with immunogold // Amyloid. 2006. V. 13. P. 13–19. https://doi.org/10.1080/13506120500535768
- Motamedi-Shad N., Monsellier E., Chiti F. Amyloid formation by the model protein muscle acylphosphatase is accelerated by heparin and heparan sulphate through a ccaffolding-based mechanism // J. Biochem. 2009. V. 146. P. 805–814. https://doi.org/10.1093/jb/mvp128
- McLaurin J., Franklin T., Zhang X. et al. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans // Eur. J. Biochem. 1999. V. 266. P. 1101–1110. https://doi.org/10.1046/j.1432-1327.1999.00957.x
- Mehra S., Ghosh D., Kumar R. et al. Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils // J. Biol. Chem. 2018. V. 293. P. 12975–12991. https://doi.org/10.1074/jbc.RA118.004267
- Makshakova O., Bogdanova L., Faizullin D. et al. The ability of some polysaccharides to disaggregate lysozyme amyloid fibrils and renature the protein // Pharmaceutics. 2023. V. 15. https://doi.org/10.3390/pharmaceutics15020624
- Dai X., Hou W., Sun Y. et al. Chitosan oligosaccharides inhibit/disaggregate fibrils and attenuate amyloid β-mediated neurotoxicity // Int. J. Mol. Sci. 2015. V. 16. P. 10526–10536. https://doi.org/10.3390/ijms160510526
- Liang Y., Ueno M., Zha S. et al. Sulfated polysaccharide ascophyllan prevents amyloid fibril formation of human insulin and inhibits amyloid-induced hemolysis and cytotoxicity in PC12 cells // Biosci. Biotechnol. Biochem. 2021. V. 85. P. 2281–2291. https://doi.org/10.1093/bbb/zbab163
- Lister J.L., Horswill A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal // Front. Cell. Infect. Microbiol. 2014. V. 4. https://doi.org/10.3389/fcimb.2014.00178
- Ramírez-Larrota J.S., Eckhard U. An introduction to bacterial biofilms and Their proteases, and their roles in host infection and immune evasion // Biomolecules. 2022. V. 12. https://doi.org/10.3390/biom12020306
- De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process // Physiol. Rev. 2010. V. 90. P. 465–494. https://doi.org/10.1152/physrev.00023.2009
- Taglialegna A., Lasa I., Valle J. Amyloid structures as biofilm matrix scaffolds // J. Bacteriol. 2016. V. 198. P. 2579–2588. https://doi.org/10.1128/JB.00122-16
- Rajitha K., Nancharaiah Y.V., Venugopalan V.P. Temperature induced amyloid production, biofilm formation and fitness in marine Bacillus sp. // Int. Biodeterior. Biodegradation. 2021. V. 161. https://doi.org/10.1016/j.ibiod.2021.105229
- Barnhart M.M., Chapman M.R. Curli biogenesis and function // Annu. Rev. Microbiol. 2006. V. 60. P. 131–147. https://doi.org/10.1146/annurev.micro.60.080805.142106
- Van Gerven N., Klein R.D., Hultgren S.J., Remaut H. Bacterial amyloid formation: Structural insights into curli biogensis // Trends Microbiol. 2015. V. 23. P. 693–706. https://doi.org/10.1016/j.tim.2015.07.010
- Robinson L.S., Ashman E.M., Hultgren S.J., Chapman M.R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein // Mol. Microbiol. 2006. V. 59. P. 870–881. https://doi.org/10.1111/j.1365-2958.2005.04997.x
- Evans M.L., Chorell E., Taylor J.D. et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation // Mol. Cell. 2015. V. 57. P. 445–455. https://doi.org/10.1016/j.molcel.2014.12.025
- Zakikhany K., Harrington C.R., Nimtz M. et al. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium // Mol. Microbiol. 2010. V. 77. P. 771–786. https://doi.org/10.1111/j.1365-2958.2010.07247.x
- Rouse S.L., Stylianou F., Wu H.Y.G. et al. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled Coil // J. Mol. Biol. 2018. V. 430. P. 3863–3871. https://doi.org/10.1016/j.jmb.2018.06.007
- Allocati N., Masulli M., Di Ilio C., De Laurenzi V. Die for the community: An overview of programmed cell death in bacteria // Cell Death Dis. 2015. V. 6. e1609–e1609. https://doi.org/10.1038/cddis.2014.570
- Jeong G.-J., Khan F., Tabassum N. et al. Bacterial extracellular vesicles: Modulation of biofilm and virulence properties // Acta Biomater. 2024. V. 178. P. 13–23. https://doi.org/10.1016/j.actbio.2024.02.029
- Nizhnikov A.A., Alexandrov A.I., Ryzhova T.A. et al. Proteomic screening for amyloid proteins // PLoS One. 2014. V. 9. https://doi.org/10.1371/journal.pone.0116003
- Nizhnikov A.A., Ryzhova T.A., Volkov K.V. et al. Interaction of prions causes heritable traits in Saccharomyces cerevisiae // PLoS Genet. 2016. V. 12. https://doi.org/10.1371/journal.pgen.1006504
- Kryndushkin D., Pripuzova N., Burnett B., Shewmaker F. Non-targeted identification of prions and amyloidforming proteins from yeast and mammalian cells // J. Biol. Chem. 2013. V. 288. № 38. P. 27100–27111. https://doi.org/10.1074/jbc.M113.485359
- Arad E., Pedersen K.B., Malka O. et al. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics // Nat. Commun. 2023. V. 14. P. 8198. https://doi.org/10.1038/s41467-023-43624-1
- Miller A.L., Bessho S., Grando K., Tükel Ç. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.638867
- Friedland R.P., Chapman M.R. The role of microbial amyloid in neurodegeneration // PLoS Pathog. 2017. V. 13. https://doi.org/10.1371/journal.ppat.1006654
- Elkins M., Jain N., Tükel Ç. The menace within: Bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases // Curr. Opin. Microbiol. 2024. V. 79. https://doi.org/10.1016/j.mib.2024.102473
- Matilla-Cuenca L., Toledo-Arana A., Valle J. Antibiofilm molecules targeting functional amyloids // Antibiotic. (Basel). 2021. V. 10. https://doi.org/10.3390/antibiotics10070795
Supplementary files


