Genetic Technologies in the Development of Industrial Microbiology
- Authors: Yanenko A.S1
-
Affiliations:
- National Research Center «Kurchatov Institute»
- Issue: Vol 61, No 11 (2025)
- Pages: 208–216
- Section: МИКРОБИОЛОГИЯ
- URL: https://ogarev-online.ru/0016-6758/article/view/361199
- DOI: https://doi.org/10.7868/S3034510325110212
- ID: 361199
Cite item
Abstract
Modern strains of microorganisms used in industrial microbiology are the result of complex genetic manipulations. Such strains carry dozens of different mutations that alter the cell’s life strategy and ensure the overproduction of a target metabolite. Methods of induced variability (mutagenesis, genetic engineering, editing methods), and in recent years, methods of synthetic biology (de novo gene synthesis) have made the main contribution to the design of strains. At the same time, it is the methods of genomic editing (bacteriophage-specific recombination, homologous recombination and CRISP Cas systems) that meet modern biosafety requirements, and most importantly, they are the most powerful tool for creating industrial producer strains that ensure economically sound production of products with high market potential. The report examine the features of different editing systems for industrially significant types of microorganisms (corynebacteria, bacilli, enterobacteria, yeast), provide examples of the creation of strains-producers (amino acids, acrylic monomers, and carotenoids) at NRC “Kurchatov Institute” using the potential of natural diversity and genomic editing, and analyze the current state and measures for accelerated development of industrial microbiology.
About the authors
A. S Yanenko
National Research Center «Kurchatov Institute»
Email: Yanenko_AS@nrcki.ru
Moscow, Russia
References
- Hirasawa T., Maeda T. Adaptive laboratory evolution of microorganisms: Methodology and application for bioproduction // Microorganisms. 2022. V. 11. № 1. P. 92. https://doi.org/10.3390/microorganisms11010092
- Zhu Y. Advances in CRISPR/Cas9 // BioMed Res. Int. 2022. V. 23. https://doi.org/10.1155/2022/9978571
- Iram A., Dong Y., Ignea C. Synthetic biology advances towards a bio-based society in the era of artificial intelligence // Curr. Opin. Biotechnol. 2024. V. 87. https://doi.org/10.1016/j.copbio.2024.103143
- Bubnov D.M., Yuzbashev T.V., Khozov A.A. et al. Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs // Nucl. Acids Res. 2022. V. 50. № 15. P. 8947–8960. https://doi.org/10.1093/nar/gkac649
- Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E. et al. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering // Comm. Biol. 2023. V. 6. № 858. https://doi.org/10.1038/s42003-023-05202-5
- Shemyakina A.O., Grechishnikova E.G., Novikov A.D. et al. A set of active promoters with different activity profiles for superexpressing Rhodococcus strain // ACS Synth. Biol. 2021. V. 10. № 3. P. 515–530. https://doi.org/10.1021/acssynbio.0c00508
- Рябченко Л.Е., Шустикова Т.Е., Шереметьева М.Е. и др. Патент РФ RU 2 639 247 L-лизин-продуцирующая коринеформация бактерия с инактивированным геном ltbr и способ получения L-лизина с использованием этой бактерии.
- Debabov V.G. The threonine story // Adv. Biochem. Eng. Biotechnol. 2003. V. 79. P. 113–136. https://doi.org/10.1007/3-540-45989-8_4
- Khozov A.A., Bubnov D.M., Plisov E.D. et al. A study on L-threonine and L-serine uptake in Escherichia coli K-12 // Front. Microbiol. 2023. V. 14. https://doi.org/10.3389/fmicb.2023.1151716
- Morbach S., Junger C., Sahm H., Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: Evidence of leader peptide formation without the presence of a ribosome binding site // J. Biosci. Bioeng. 2000. V. 90. P. 501–507. https://doi.org/10.1016/s1389-1723(01)80030-x
- Ryabchenko L., Titov I., Leonova T. et al. Mutational analysis supports three-hairpin model of attenuator for transcription regulation of ilvBNCoperon in Corynebacterium glutamicum // Microorganisms. 2025. V. 13. № 291. P. 2–16. https://doi.org/10.3390/microorganisms13020291
- Yuzbasheva E.Y., Taratynova M.O., Fedyaeva I.M. et al. Large-scale bioproduction of natural astaxanthin in Yarrowia lipolytica // Biores. Technol. Rep. 2023. V. 21. https://doi.org/10.1016/j.biteb.2022.101289
- Дебабов В.Г., Яненко А.С. Биокаталитический гидролиз нитрилов // Обзорный журнал по химии. 2011. Т. 1. № 4. С. 376–394.
- Лавров К.В., Ларикова Г.А., Яненко А.С. Новый биокаталитический процесс – синтез N-замещенных акриламидов // Биотехнология. 2012. № 4. С. 26–30.
- Grechishnikova E.G., Shemyakina A.O., Novikov A.D. et al. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform // Crit. Rev. Biotechnol. 2022. V. 43. № 6. P. 835–850. https://doi.org/10.1080/07388551.2022.2091976
- Lavrov K.V., Shemyakina A.O., Grechishnikova E.G. et al. A new concept of biocatalytic synthesis of acrylic monomers for obtaining water-soluble acrylic heteropolymers // Metab. Eng. Commun. 2024. V. 18. https://doi.org/10.1016/j.mec.2023.e00231
Supplementary files


