Synthetic Biology. Morality and Reason
- Authors: Matyushkina D.S.1, Gorbunov K.S.1, Fisunov G.Y.1, Govorun V.M.1
-
Affiliations:
- Scientific Research Institute for Systems Biology and Medicine
- Issue: Vol 61, No 11 (2025)
- Pages: 85–93
- Section: ОБЩИЕ ВОПРОСЫ И ТЕХНОЛОГИИ
- URL: https://ogarev-online.ru/0016-6758/article/view/361187
- DOI: https://doi.org/10.7868/S3034510325110093
- ID: 361187
Cite item
Abstract
Keywords
About the authors
D. S. Matyushkina
Scientific Research Institute for Systems Biology and Medicine
Email: d.matyushkina@sysbiomed.ru
Moscow, Russia
K. S. Gorbunov
Scientific Research Institute for Systems Biology and MedicineMoscow, Russia
G. Y. Fisunov
Scientific Research Institute for Systems Biology and MedicineMoscow, Russia
V. M. Govorun
Scientific Research Institute for Systems Biology and MedicineMoscow, Russia
References
- Оссовская М. Рыцарь и буржуа. Исследования по истории морали. М.: Прогресс, 1987. 528 с.
- Дольник В.Р. Непослушное дитя биосферы. Беседы о поведении человека в компании птиц, зверей и детей. М.: Издательство МЦНИО, 2016. 352 с.
- Эфроимсон В.П. Генетика этики и эстетики. М.: Тайдекс Ко, 2004. 304 с.
- Хаузер М. Мораль и разум. Как природа создавала наше универсальное чувство добра и зла / под ред. Александрова Ю.И. М.: Дрофа, 2008. 639 с.
- Yus E., Maier T., Michalodimitrakis K. et al. Impact of genome reduction on bacterial metabolism and its regulation // Science. 2009. V. 326. № 5957. P. 1263–1268. https://doi.org/10.1126/science.1177263
- Breuer M., Earnest T.M., Merryman C. et al. Essential metabolism for a minimal cell // eLife. 2019. V. 8. https://doi.org/10.7554/eLife.36842
- Morowitz H.J. The completeness of molecular biology // Israel J. Med. Sci. 1984. V. 20. P. 750–753.
- Wilkins M., Pasquali C., Appel R. et al. From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis // Nat. Biotechnol. 1996. V. 14. P. 61–65. https://doi.org/10.1038/nbt0196-61
- Güell M., van Noort V., Yus E. et al. Transcriptome complexity in a genome-reduced bacterium // Science. 2009. V. 326. № 5957. P. 1268–1271. https://doi.org/10.1126/science.1176951
- Gibson D.G., Glass J.I., Lartigue C. et al. Creation of a bacterial cell controlled by a chemically synthesized genome // Science. 2010. V. 329. № 5987. P. 52–56. https://doi.org/10.1126/science.1190719
- Hutchison C.A. 3rd, Chuang R.Y., Noskov V.N. et al. Design and synthesis of a minimal bacterial genome // Science. 2016. V. 351. № 6280. https://doi.org/10.1126/science.aad6253
- De C., Bittencourt D.M., Brown D.M., Assad-Garcia N. et al. Minimal bacterial cell JCVI-syn3B as a chassis to investigate interactions between bacteria and mammalian cells // ACS Synth. Biol. 2024. V. 13. № 4. https://doi.org/10.1021/acssynbio.3c00513
- Burgos R., Weber M., Martinez S. et al. Protein quality control and regulated proteolysis in the genome-reduced organism Mycoplasma pneumoniae // Mol. Syst. Biol. 2020. V. 16. № 1.
- Karr J.R., Sanghvi J.C., Macklin D.N. et al. A whole-cell computational model predicts phenotype from genotype // Cell. 2012. V. 150. № 2. P. 389–401. https://doi.org/10.1016/j.cell.2012.05.044
- Maritan M., Autin L., Karr J. et al. Building structural models of a whole mycoplasma cell // J. Mol. Biol. 2022. V. 434. № 2. https://doi.org/10.1016/j.jmb.2021.167351
- Fisunov G.Y., Zubov A.I., Pobeguts O.V. et al. The dynamics of Mycoplasma gallisepticum nucleoid structure at the exponential and stationary growth phases // Front. Microbiol. 2021. V. 18. № 12. https://doi.org/10.3389/fmich.2021.753760
- Butenko I., Vanyushkina A., Pobeguts O. et al. Response induced in Mycoplasma gallisepticum under heat shock might be relevant to infection process // Sci. Rep. 2017. V. 7. № 1. P. 11330. https://doi.org/10.1038/s41598-017-09237-7
- Matyushkina D., Pobeguts O., Butenko I. et al. Phase transition of the bacterium upon invasion of a host cell as a mechanism of adaptation: A Mycoplasma gallisepticum model // Sci. Rep. 2016. V. 24. № 6. https://doi.org/10.1038/srep35959
- Mazin P.V., Fisunov G.Y., Gorbachev A.Y. et al. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium // Nucl. Ac. Res. 2014. V. 42. № 21. P. 13254–13268. https://doi.org/10.1093/nar/gku976
- Fisunov G.Y., Evsyutina D.V., Garanina I.A. et al. Ribosome profiling reveals an adaptation strategy of reduced bacterium to acute stress // Biochimie. 2017. V. 132. P. 66–74. https://doi.org/10.1016/j.biochi.2016.10.015
- Vanyushkina A.A., Fisunov G.Y., Gorbachev A.Y. et al. Metabolomic analysis of three Mollicute species // PLoS One. 2014. V. 9. № 3. https://doi.org/10.1371/journal.pone.0089312
- Fisunov G.Y., Garanina I.A., Evsyutina D.V. et al. Reconstruction of transcription control networks in Mollicutes by high-throughput identification of promoters // Front. Microbiol. 2016. V. 7. https://doi.org/10.3389/fmich.2016.01977
- Maier T., Schmidt A., Güell M. et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium // Mol. Syst. Biol. 2011. V. 7. P. 511. https://doi.org/10.1038/msb.2011.38
- Fisunov G.Y., Tsvetkov V.B., Tsoy E.A. et al. WniA transcription factor provides feedback loop between translation and energy production in a genome-reduced bacterium // Front. Microbiol. 2024. V. 15. https://doi.org/10.3389/fmich.2024.1504418
- Alberti S., Gladfelter A., Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates // Cell. 2019. V. 176. № 3. P. 419–434. https://doi.org/10.1016/j.cell.2018.12.035
- Ellis R.J. Macromolecular crowding: Obvious but underappreciated // Trends Biochem. Sci. 2001. V. 26. № 10. P. 597–604. https://doi.org/10.1016/S0968-0004(01)01398-7
- Kühner S., van Noort V., Betts M.J. et al. Proteome organization in a genome-reduced bacterium // Science. 2009. V. 326. № 5957. P. 1235–1240. https://doi.org/10.1126/science.1176343
- Fredens J., Wang K., de la Torre D. et al. Total synthesis of Escherichia coli with a recoded genome // Nature. 2019. V. 569. P. 514–518. https://doi.org/10.1038/s41586-019-1192-5
- Venetz J.E., Del Medico L., Wolfle A. et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality // PNAS USA. 2019. V. 116. № 16. P. 8070–8079. https://doi.org/10.1073/pnas.1818259116
- Richardson S.M., Mitchell L.A., Straegiadario G. et al. Design of a synthetic yeast genome // Science. 2017. V. 355. № 6329. P. 1040–1044. https://doi.org/10.1126/science.aaf4557
- Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template // Science. 2002. V. 297. № 5583. P. 1016–1018. https://doi.org/10.1126/science.1072266
- Smith H.O., Hutchison C.A. 3rd, Pfannkoch C., Venter J.C. Generating a synthetic genome by whole genome assembly: PhIX174 bacteriophage from synthetic oligonucleotides // PNAS USA. 2003. V. 100. № 26. P. 15440–15445. https://doi.org/10.1073/pnas.2237126100
- Фисунов Г.Ю., Семашко Т.А., Евсютина Д.В. и др. Chirres riconna бактериофага N4 // Пробл. особо опасных инфекций. 2024. Т. 1. С. 182–191. https://doi.org/10.21055/0370-1069-2024-1-182-191
- Karim A.S., Brown D.M., Archuleta C.M. et al. Deconstructing synthetic biology across scales: A conceptual approach for training synthetic biologists // Nat. Commun. 2024. V. 15. P. 5425. https://doi.org/10.1038/s41467-024-49626-x
Supplementary files

