Plants, RNA, and New Genetic Technologies
- Authors: Kochetov A.V1,2,3
-
Affiliations:
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Novosibirsk State University
- Novosibirsk State Agricultural University
- Issue: Vol 61, No 11 (2025)
- Pages: 57-70
- Section: ОБЩИЕ ВОПРОСЫ И ТЕХНОЛОГИИ
- URL: https://ogarev-online.ru/0016-6758/article/view/361185
- DOI: https://doi.org/10.7868/S3034510325110076
- ID: 361185
Cite item
Abstract
Keywords
About the authors
A. V Kochetov
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University; Novosibirsk State Agricultural University
Email: ak@biomet.nsc.ru
Novosibirsk, Russia
References
- Huang G., Allen R., Davis E.L. et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential rootknot nematode parasitism gene // PNAS USA. 2006. V. 103. P. 14302–14306. https://doi.org/10.1073/pnas.0604698103
- Nowara D., Gay A., Lacomme C. et al. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis // The Plant Cell. 2010. V. 22. P. 3130–3141. https://doi.org/10.1105/tpc.110.077040
- Govindarajulu M., Epstein L., Wroblewski T., Michelmore R.W. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce // Plant Biotechnol. J. 2015. V. 13. P. 875–883. https://doi.org/10.1111/pbi.12307
- Jahan S.N., Asman A.K., Corcoran P. et al. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans // J. Exp. Bot. 2015. V. 66. P. 2785–2794. https://doi.org/10.1093/jxb/erv094
- Abdellatef E., Will T., Koch A. et al. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae // Plant Biotechnol. J. 2015. V. 13. P. 849–857. https://doi.org/10.1111/pbi.12322
- Zhang J., Khan S.A., Hasse C. et al. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids // Science. 2015. V. 347. P. 991–994. https://doi.org/10.1126/science.1261680
- Alakonya A., Kumar R., Koenig D. et al. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism // Plant Cell. 2012. V. 7. P. 3153–3166. https://doi.org/10.1105/tpc.112.099994
- Mo Q., Lv B., Sun Y. et al. Screening and production of dsRNA molecules for protecting Cucumis sativus against Cucumber mosaic virus through foliar application // Plant Biotechnol. Rep. 2022. V. 16. № 4. P. 409–418. https://doi.org/10.1007/s11816-022-00750-4
- Konakalla N.C., Bag S., Deraniyagala A.S. et al. Induction of plant resistance in tobacco (Nicotiana tabacum) against tomato spotted wilt orthotospovirus through foliar application of dsRNA // Viruses. 2021. V. 13. № 4. P. 662. https://doi.org/10.3390/v1304 0662
- Degnan R.M., McTaggart A.R., Shuey L.S. et al. Exogenous double-stranded RNA inhibits the infection physiology of rust fungi to reduce symptoms in planta // Mol. Plant Pathol. 2023. V. 24. № 3. P. 191–207. https://doi.org/10.1111/mpp.13286
- Nerva L., Sandrini M., Gambino G., Chitarra W. Double-stranded rnas (Dsrnas) as a sustainable tool against gray mold (Botrytis cinerea) in grapevine: Effectiveness of different application methods in an open-air environment // Biomolecules. 2020. V. 10. № 2. https://doi.org/10.3390/biom10020200
- Lucena-Leandro V.S., Abreu E.F.A., Vidal L.A. et al. Current scenario of exogenously induced RNAi for lepidopteran agricultural pest control: From dsRNA design to topical application // Int. J. Mol. Sci. 2022. V. 23. № 24. https://doi.org/10.3390/ijms232415836
- Leelesh R.S., Rieske L.K. Oral ingestion of bacterially expressed dsRNA // InSects. 2020. V. 11. № 440. P. 1–10. https://doi.org/10.3390/insects110 70440
- Hashiro S., Chikami Y., Kawaguchi H. et al. Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system // Appl. Microbiol. Biotechnol. 2021. V. 105. № 12. P. 4987–5000. https://doi.org/10.1007/ s00253- 021- 11324-9
- Werner B.T., Koch A., Šečić E. et al. Fusarium graminearum DICER-like- dependent sRNAs are required for the suppression of host immune genes and full virulence // PLoS One. 2021. V. 16. https://doi.org/10.1371/journal.pone.0252365
- Zhang W., Wang R., Li Y. et al. Engineered pine endophytic fungus expressing double-stranded RNA targeting lethal genes to control the plant-parasitic nematode Bursaphelenchus xylophilus // Phytopathology. 2025. V. 115. № 3. P. 224–233. https://doi.org/10.1094/PHYTO-07-24-0203-R
- Kochetov A.V. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs // BioEssays. 2014. V. 36. P. 1204–1212. https://doi.org/10.1002/bies.201400111
- Summerell B.A. Resolving Fusarium: current status of the genus // Ann. Rev. Phytopathol. 2019. V. 57. P. 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204
- Dean R., van Kan J.A.L., Pretorius Z.A. et al. The top 10 fungal pathogens in molecular plant pathology // Mol. Plant Pathol. 2012. V. 13. P. 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
- Chen Y., Kistler H.C., Ma Z. Annual review of phytopathology Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management // Ann. Rev. Phytopathol. 2019. V. 57. P. 15–39. https://doi.org/10.1146/annurev-phyto-082718-100318
- Alahmad S., Simpfendorfer S., Bentley A.R., Hickey L.T. Crown rot of wheat in Australia: Fusarium pseudograminearum taxonomy, population biology and disease management // Austral. Plant Pathol. 2018. V. 47. P. 285–299. https://doi.org/10.1007/s13313-018-0554-z
- O'Donnell K., McCormick S.P., Busman M. et al. Marasas et al. 1984 “Toxigenic Fusarium species: identity and Mycotoxicology” revisited // Mycologia. 2018. V. 110. P. 1058–1080. https://doi.org/10.1080/00275514.2018.1519773
- De Chaves M.A., Reginatto P., da Costa B.S. et al. Fungicide resistance in Fusarium graminearum species complex // Curr. Microbiol. 2022. V. 79. P. 62. https://doi.org/10.1007/s00284-021-02759-4
- Yu X., Killiny N. RNA interference-mediated control of Asian citrus psyllid, the vector of the huanglongbing bacterial pathogen // Tropical Plant Pathology. 2020. V. 45. № 3. P. 298–305. https://doi.org/10.1007/s40858-020-00356-7
- Šečić E., Kogel K.H. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies // Curr. Opin Biotechnol. 2021. V. 70. P. 136–142. https://doi.org/10.1016/j.copbio.2021.04.001
- Liu C., Kogel K.H., Ladera-Carmona M. Harnessing RNA interference for the control of Fusarium species: A critical review // Mol. Plant Pathol. 2024. V. 25. № 10. https://doi.org/10.1111/mpp.70011
- Koch A., Kumar N., Weber L. et al. Host-induced gene silencing of cytochrome P450 lanosterol C14alpha-demethylase-encoding genes confers strong resistance to Fusarium species // PNAS USA. 2013. V. 110. P. 19324–19329. https://doi.org/10.1073/pnas.1306373110
- Koch A., Biedenkopf D., Furch A. et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery // PLoS Pathogens. 2016. V. 12. https://doi.org/10.1371/journal.ppat.1005901
- Koch A., Stein E., Kogel K.H. RNA-based disease control as a complementary measure to fight Fusarium fungi through silencing of the azole target cytochrome P450 lanosterol C-14 α-demethylase // Europ. J. Plant Pathol. 2018. V. 152. P. 1003–1010. https://doi.org/10.1007/s10658-018-1518-4
- Koch A., Höfle L., Werner B.T. et al. SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants // Mol. Plant Pathol. 2019. V. 20. P. 1636–1644. https://doi.org/10.1111/mpp.12866
- Yang P., Yi S.Y., Nian J.N. et al. Application of double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat // Front. Microbiol. 2021. V. 12. https://doi.org/10.3389/fmicb.2021.660976
- Wu L.Y., Chen F.R., Wang P.W. et al. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum // J. Integr. Plant Biol. 2023. https://doi.org/10.1016/j.jia. 2023.11.046
- Song X.S., Gu K.X., Duan X.X. et al. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing // Mol. Plant Pathol. 2018. V. 19. P. 2543–2560. https://doi.org/10.1111/mpp.12728
- Gu K.X., Song X.S., Xiao X.M. et al. A β-2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance // Pesticide Biochem. and Physiol. 2019. V. 153. P. 36–46. https://doi.org/10.1016/j.pestbp.2018.10.005
- Gao D., Abdullah S., Baldwin T. et al. Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants // Plant Cell Reports. 2024. V. 43. P. 40. https://doi.org/10.1007/s00299-023-03129-z
- Hao G., McCormick S., Vaughan M.M. Effects of double-stranded RNAs targeting Fusarium graminearum TRI6 on Fusarium head blight and mycotoxins // Phytopathology. 2021. V. 111. P. 2080–2087. https://doi.org/10.1094/PHYTO-10-20-0468-R
- Hoang B.T.L., Fletcher S.J., Brosnan C.A. et al. RNAi as a foliar spray: Efficiency and challenges to field applications // Int. J. Mol. Sci. 2022. V. 23. P. 6639. https://doi.org/10.3390/ijms23126639
- Höfle L., Biedenkopf D., Werner B.T. et al. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes // RNA Biology. 2020. V. 17. P. 463–473. https://doi.org/10.1080/15476286.2019.1700033
- He F., Zhang R., Zhao J. et al. Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight // Front. Plant Sci. 2019. V. 10. P. 1362. https://doi.org/10.3389/fpls.2019.01362
- Shuai J., Tu Q., Zhang Y. et al. Silence of five F. graminearum genes in wheat host confers resistance to Fusarium head blight // J. Integrative Plant Biol. 2024. https://doi.org/10.1016/j.chemosphere.2024.142678
- Chen W., Kastner C., Nowara D. et al. Host-induced silencing of Fusarium culmorum genes protects wheat from infection // J. Exp. Bot. 2016. V. 67. № 17. P. 4979–4991. https://doi.org/10.1093/jxb/erw263
- Pérez C.E.B., Cabral G.B., Aragão F.J.L. Host-induced gene silencing for engineering resistance to Fusarium in soybean // Plant Pathol. 2021. V. 70. P. 417–425. https://doi.org/10.1007/s12033-019-00215-0
- Chauhan S., Rajam M.V. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum // Planta. 2024. V. 259. P. 79. https://doi.org/10.1007/s00425-024-04360-y
- Tetorya M., Rajam M.V. RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato // 3 Biotech. 2021. V. 11. № 10. P. 443. https://doi.org/10.1007/s13205-021-02973-8
- Song X.S., Gu K.X., Duan X.X. et al. A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium asiaticum // Pestic. Biochem. Physiol. 2018. V. 150. P. 1–9. https://doi.org/10.1016/j.pestbp.2018.07.004
- Fan J., Urban M., Parker J.E. et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function // New Phytologist. 2013. V. 198. P. 821–835. https://doi.org/10.1111/nph.12193
- Harris L.J., Balcerzak M., Johnston A. et al. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize // Fungal Biology. 2016. V. 120. P. 111–123. https://doi.org/10.1016/j.funbio.2015.10.010
- Mosa M.A., Youssef K. Topical delivery of host induced RNAi silencing by layered double hydroxide nanosheets: An efficient tool to decipher pathogenicity gene function of Fusarium crown and root rot in tomato // Physiol. and Mol. Plant Pathol. 2021. V. 115. https://doi.org/10.1016/j.pmpp.2021.101684
- Liu W., Wang X., Zhou A. et al. Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis // J. Insect. Physiol. 2025. V. 161. https://doi.org/10.1016/j.jinsphys.2025.104754
- Mao Y.B., Cai W.J., Wang J.W. et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol // Nat. Biotechnol. 2007. V. 25. № 11. P. 1307–1313. https://doi.org/10.1038/nbt1352
- Yogindran S., Rajam M.V. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato // Genomics. 2021. V. 113. № 1. Pt. 2. P. 736–747. https://doi.org/10.1016/j.ygeno.2020.10.004
- Jaiwal A., Rajam M.V. Host-induced RNA interference confers insect resistance in Tobacco by targeting chitin synthase gene of Helicoverpa armigera // SSRN Electronic J. 2022. https://doi.org/10.2139/ssrn.4264787
- Bally J., McIntyre G.J., Doran R.L. et al. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts // Front. Plant Sci. 2016. V. 7. P. 1453. https://doi.org/10.3389/fpls.2016.01453
- Biedenkopf D., Will T., Knauer T. et al. Systemic spreading of exogenous applied RNA biopesticides in the crop plant Hordeum vulgare // ExRNA 2. 2020. V. 2. https://doi.org/10.1186/s41544-020-00052-3
- Luo J., Liang S., Li J. et al. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme A reductase in cotton // New Phytologist. 2017. V. 215. P. 1173–1185. https://doi.org/10.1111/nph.14636
- Thakur N., Upadhyay S.K., Verma P.C. et al. Enhanced whitef ly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene // PLoS One 2014. V. 9. https://doi.org/10.1371/journal.pone.0087235
- Lomate P.R., Bonning B.C. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula // Sci. Reports. 2016. V. 6. https://doi.org/10.1038/srep27587
- Marcianò D., Ricciardi V., Marone Fassolo E. et al. RNAi of a putative grapevine susceptibility gene as a possible downy mildew control strategy // Front. Plant Sci. 2021. V. 28. № 12. https://doi.org/10.3389/fpls.2021.667319
- Di Lelio I., Barra E., Coppola M. et al. Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodoptera littoralis larvae // J. Pest. Sci. 2022. V. 95. P. 1413–1428. https://doi.org/10.1007/s10340-021-01467-z
- Bachman P., Fischer J., Song Z. et al. Environmental fate and dissipation of applied dsRNA in soil, aquatic systems, and plants // Front. Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.00021
- Moorlach B.W., Sede A.R., Hermann K.M. et al. Interpolyelectrolyte complexes of in vivo produced dsRNA with chitosan and alginate for enhanced plant protection against tobacco mosaic virus // Int. J. Biol. Macromol. 2025. V. 27. № 306. Pt. 2. https://doi.org/10.1016/j.ijbiomac.2025.141579
- Qiao H., Jiang Q., Zhao J. et al. Nano-delivery platform with strong protection and efficient delivery: Preparation of self-assembled RNA pesticide with dual RNAi targets against Apolygus lucorum // J. Nanobiotechnology. 2025. V. 23. № 1. P. 93. https://doi.org/10.1186/s12951-025-03155-x
- Jiang Y., Zong S., Wang X. et al. pH-responsive nanoparticles for oral delivery of RNAi for sustained protection against Spodoptera exigua // Int. J. Biol. Macromol. 2025. V. 4. https://doi.org/10.1016/j.ijbiomac.2025.141763
- Yong J., Xu W., Wu M. et al. Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants // Nat. Plants. 2025. V. 11. № 1. P. 131–144. https://doi.org/10.1038/s41477-024-01882-x
- Nityagovsky N.N., Kiselev K.V., Suprun A.R., Dubrovina A.S. Exogenous dsRNA induces RNA interference of a chalcone synthase gene in Arabidopsis thaliana // Int. J. Mol. Sci. 2022. V. 23. № 10. https://doi.org/10.3390/ijms23105325
- Ji Q., Kowalski K.P., Golenberg E.M. et al. Cell-penetrating peptide-mediated delivery of gene-silencing nucleic acids to the invasive common reed Phragmites australis via foliar application // Plants (Basel). 2025. V. 14. № 3. https://doi.org/10.3390/plants14030458
- Panozzo S., Milani A., Bordignon S. et al. RNAi technology development for weed control: All smoke and no fire? // Pest. Manag. Sci. 2025. V. 21. https://doi.org/10.1002/ps.8729
- Wang M., Thomas N., Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection // Curr. Opin. Plant Biol. 2017. V. 38. P. 133–141. https://doi.org/10.1016/j.pbi.2017.05.003
- Saxena S., Yogindran S., Arya M. et al. RNAi-Mediated control of lepidopteran pests of important crop plants // Moths and Caterpillars / Ed. Shields V.D.C. Intech Open, 2021. P. 27. https://doi.org/10.5772/intechopen.96429
- Khajuria C., Ivashuta S., Wiggins E. et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte // PLoS One. 2018. V. 13. https://doi.org/10.1371/journal.pone.0197059
- Liao C., Zhang M., Zhang J. Characterization and potential mechanism of resistance to double-stranded RNA in willow leaf beetle, Plagiodera versicolora // J. Pest Sci. 2024. V. 97. P. 2217–2226. https://doi.org/10.21203/rs.3.rs-3250534/v1
- Narva K., Toprak U., Alyokhin A. et al. Insecticide resistance management scenarios differ for RNA-based sprays and traits // Insect. Mol. Biol. 2025. V. 21. https://doi.org/10.1111/imb.12986
- Rodrigues T.B., Mishra S.K., Sridharan K. et al. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit Beta Type-5 in Colorado potato beetle (Leptinotarsa decemlineata) // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.728652
- Yan J., Nauen R., Reitz S. et al. The new kid on the block in insect pest management: Sprayable RNAi goes commercial // Sci. China Life Sci. 2024. V. 67. P. 1766–1768. https://doi.org/10.1007/s11427-024-2612-1
- Feng X., Shi Y., Sun Z. et al. Control of Fusarium graminearum infection in wheat by dsRNA-based spray-induced gene silencing // J. Agric. Food Chem. 2025. V. 3. https://doi.org/10.1021/acs.jafc.4c12665
- Schiemann J., Dietz-Pfeilstetter A., Hartung F. et al. Risk assessment and regulation of plants modified by modern biotechniques: Current status and future challenges // Ann. Rev. Plant Biol. 2019. V. 70. P. 699–726. https://doi.org/10.1146/annurev-arplant-050718-100025
- Kleter G.A. Food safety assessment of crops engineered with RNA-interference and other methods to modulate expression of endogenous and plant pest genes // Pest Management Sci. 2020. V. 76. P. 3333–3339. https://doi.org/10.1002/ps.5957
- EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H., Birch A.N., Casacuberta J. et al. Scientific opinion on the assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-124) // EFSA J. 2018. V. 16. P. 5310. https://doi.org/10.2903/j.efsa.2017.4744
- EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H., Bresson J.L., Dalmay T. et al. Scientific opinion on the assessment of genetically modified maize MON 87427 × MON 89034 × MIR162 × × MON 87411 and subcombinations, for food and feed uses, under regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2017-144) // EFSA J. 2019. V. 17. https://doi.org/10.2903/j.efsa.2019.5848
- Petrick J.S., Frierdich G.E., Carleton S.M. et al. Corn rootworm-active RNA DvSnf7: Repeat dose oral toxicology assessment in support of human and mammalian safety // Regulat. Toxicol. and Pharmacol. 2016. V. 81. P. 57–68. https://doi.org/10.1016/j.yrtph.2016.07.009
- Zhang H., Chen J., Gao J. et al. New insights into transmission pathways and possible off-target effects of insecticidal dsRNA released by treated plants // Pestic. Biochem. Physiol. 2022. V. 188. https://doi.org/10.1016/j.pestbp.2022.105281
- Tan J., Sheng C.W., Karthi S. et al. New insights into expanding the insecticidal spectrum of dsRNA mediated by the high sequence identity between dsRNA and nontarget mRNA // J. Agric. Food Chem. 2025. V. 73. № 8. P. 4605–4616. https://doi.org/10.1021/acs.jafc.4c12803
- Khan F., Esmaeily M., Jin G. et al. A sprayable long hairpin dsRNA formulated with layered double hydroxide against the western f lower thrips, Frankliniella occidentalis: Control efficacy in a greenhouse and inf luence on beneficial insects // Pestic. Biochem. Physiol. 2025. V. 209. https://doi.org/10.1016/j.pestbp.2025.106331
- Xu M., Li G., Guo Y. et al. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes // New Phytol. 2022. V. 233. № 6. P. 2503–2519. https://doi.org/10.1111/nph.17945
- Kwon S., Rupp O., Brachmann A. et al. mRNA inventory of extracellular vesicles from Ustilago maydis // J. Fungi. 2021. V. 7. https://doi.org/10.3390/jof7070562
- Doehlemann G., Wahl R., Horst R.J. et al. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis // Plant J. 2008. V. 56. P. 181–195. https://doi.org/10.1111/j.1365-313X.2008.03590.x
- Laurie J.D., Linning R., Bakkeren G. Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis // Curr. Genet. 2008. V. 53. P. 49–58. https://doi.org/10.1007/s00294-007-0165-7
- Zhang B.S., Li Y.C., Guo H.S., Zhao J.H. Verticillium dahlia secretes small RNA to target host MIR157d and retard plant floral transition during infection // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.847086
- Zhang T., Zhao Y.L., Zhao J.H. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen // Nat. Plants 2016. V. 2. https://doi.org/10.1038/nplants.2016.153
- Weiberg A., Wang M., Lin F.M. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways // Science. 2013. V. 342. P. 118–123. https://doi.org/10.1126/science.1239705
- Cai Q., Qiao L., Wang M. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes // Science. 2018. V. 360. № 6393. P. 1126–1129. https://doi.org/10.1126/science.aar4142
- Zhu K., Liu M., Fu Z. et al. Plant microRNAs in larval food regulate honeybee caste development // PLoS Genet. 2017. V. 13. № 8. https://doi.org/10.1371/journal.pgen.1006946
- Hou Y., Zhai Y., Feng L. et al. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility // Cell Host Microbe. 2019. V. 25. № 1. P. 153–165. https://doi.org/10.1016/j.chom.2018.11.007
- Johnson N.R., dePamphilis C.W., Axtell M.J. Compensatory sequence variation between trans-species small RNAs and their target sites // eLife. 2019. V. 8. https://doi.org/10.7554/eLife.49750
- Borniego M.L., Singla-Rastogi M., Baldrich P. et al. Diverse plant RNAs coat Arabidopsis leaves and are distinct from apoplastic RNAs // PNAS USA. 2025. V. 122. № 1. https://doi.org/10.1073/pnas.2409090121
- Guo X.Y., Li Y., Fan J. et al. Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.00433
- Panwar V., McCallum B., Bakkeren G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus // Plant Mol. Biol. 2013. V. 81. P. 595–608. https://doi.org/10.1007/s11103-013-0022-7
- Silvestri A., Turina M., Fiorilli V. et al. Different genetic sources contribute to the small RNA population in the Arbuscular mycorrhizal fungus Gigaspora margarita // Front. Microbiol. 2020. V. 11. https://doi.org/10.3389/fmicb.2020.00395
- Liu J., Lu Y., Chen X. et al. The silent conversation: How small RNAs shape plant-microbe relationships // Int. J. Mol. Sci. 2025. V. 26. № 6. https://doi.org/10.3390/ijms26062631
- Gu H., Lian B., Yuan Y. et al. A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants // Sci. China Life Sci. 2022. V. 65. P. 1–15. https://doi.org/10.1007/s11427-021-2017-1
- Nechooshtan G., Yunusov D., Chang K. et al. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment // Nucl. Acids Res. 2020. V. 48. P. 8035–8049. https://doi.org/10.1093/nar/gkaa526
- He X., Li F., Bor B. et al. Human tRNA-derived small RNAs modulate host-oral microbial interactions // J. Dent. Res. 2018. V. 97. № 11. P. 1236–1243. https://doi.org/10.1177/0022034518770605
- He B., Cai Q., Qiao L. et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles // Nat. Plants. 2021. V. 7. P. 342–352. https://doi.org/10.1038/s41477-021-00863-8
- Ren B., Wang X., Duan J., Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation // Science. 2019. V. 365. P. 919–922. https://doi.org/10.1126/science.aav8907
- Van Niel G., Carter D.R.F., Clayton A. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles // Nat. Rev. Mol. Cell Biol. 2022. V. 23. P. 369–382. https://doi.org/10.1038/s41580-022-00460-3
- Trifonova E.A., Sapotsky M.V., Komarova M.L. et al. Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against Tobacco mosaic virus // Plant Cell Reports. 2007. V. 26. P. 1121–1126. https://doi.org/10.1007/s00299-006-0298-z
- Sugawara T., Trifonova E.A., Kochetov A.V., Kanayama Y. Expression of extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco // BMC Plant Biol. 2016. V. 16. P. 246. https://doi.org/10.1186/s12870-016-0928-8
- Филипенко Е.А., Кочетов А.В., Kanayama Y. и др. PR-белки с рибонуклеазной активностью и устойчивость растений к патогенным грибам // Вавил. журн. генетики и селекции. 2013. Т. 17. С. 326–334. https://doi.org/10.1134/S2079059713060026
- Fich E.A., Fisher J., Zamir D., Rose J.K.C. Transpiration from tomato fruit occurs primarily via trichome-associated transcuticular polar pores // Plant Physiol. 2020. V. 184. P. 1840–1852. https://doi.org/10.1104/pp.20.01105
- Jang S., Kim D., Lee S., Ryu C.M. Plant-induced bacterial gene silencing: A novel control method for bacterial wilt disease // Front. Plant Sci. 2024. V. 15. https://doi.org/10.3389/fpls.2024.1411837
- Teng Y., Ren Y., Sayed M. et al. Plant-derived exosomal microRNAs shape the gut microbiota // Cell Host Microbe. 2018. V. 24. P. 637–652. https://doi.org/10.1016/j.chom.2018.10.001
- Zand Karimi H., Innes R.W. Molecular mechanisms underlying host-induced gene silencing // Plant Cell. 2022. V. 34. № 9. P. 3183–3199. https://doi.org/10.1093/plcell/koac165
- Baldrich P., Rutter B.D., Karimi H.Z. et al. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs // Plant Cell. 2019. V. 31. P. 315–324. https://doi.org/10.1105/tpc.18.00872
- Ravet A., Zervudacki J., Singla-Rastogi M. et al. Vesicular and non-vesicular extracellular small RNAs direct gene silencing in a plant-interacting bacterium // Nat. Commun. 2025. V. 16. № 1. P. 3533. https://doi.org/10.1038/s41467-025-57908-1
Supplementary files

