Genetic Technologies and Methods of Combinatorial Chemistry and Biology in the Study of Biological Processes
- Authors: Gabibov A.G.1,2, Knorre V.D.1, Solov’ev Y.V.1
-
Affiliations:
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 61, No 11 (2025)
- Pages: 40–45
- Section: ОБЩИЕ ВОПРОСЫ И ТЕХНОЛОГИИ
- URL: https://ogarev-online.ru/0016-6758/article/view/361183
- DOI: https://doi.org/10.7868/S303451032510051
- ID: 361183
Cite item
Abstract
About the authors
A. G. Gabibov
Shemyakin-Ovchinnikov Institute of bioorganic chemistry Russian Academy of Sciences; Lomonosov Moscow State UniversityMoscow, 117997 Russia; Moscow, 119991 Russia
V. D. Knorre
Shemyakin-Ovchinnikov Institute of bioorganic chemistry Russian Academy of Sciences
Email: vera.knorre@gmail.com
Moscow, 117997 Russia
Ya. V. Solov’ev
Shemyakin-Ovchinnikov Institute of bioorganic chemistry Russian Academy of SciencesMoscow, 117997 Russia
References
- Larionova T.D., Bastola S., Aksinina T.E. et al. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells // Nat. Cell Biol. 2022. V. 24. № 10. P. 1541–1557. https://doi.org/10.1038/s41556-022-00994-w
- Orlov E.E., Nesterenko A.M., Korotkova D.D. et al. Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos // Dev. Cell. 2022. V. 57. № 1. P. 95–111. https://doi.org/10.1016/j.devecl.2021.11.021
- Wang Y., Ly H., Lei R. et al. An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies // Immunity. 2024. V. 57. № 10. P. 2453–2465. https://doi.org/10.1016/j.immuni.2024.07.022
- Mason D.M., Friedensohn S., Weber C.R. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning // Nat. Biomed. Eng. 2021. V. 5. № 6. P. 600–612. https://doi.org/10.1038/s41551-021-00699-9
- Smirnov I.V., Golovin A.V., Chatziefthimiou S.D. Robotic OM/MM-driven maturation of antibody combining sites // Sci. Adv. 2016. V. 2. № 10. https://doi.org/10.1126/sciadv.1501695
- Robert P.A., Akbar R., Frank R. et al. Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction // Nat. Comput. Sci. 2022. V. 2. № 12. P. 845–865. https://doi.org/10.1038/s43588-022-00372-4
- Greiff V., Menzel U., Milo E. et al. Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development // Cell Rep. 2017. V. 19. № 7. P. 1467–1478. https://doi.org/10.1016/j.celrep.2017.04.054
- Éliás S., Wrzodek C., Deane Ch.M. et al. Prediction of polyspecificity from antibody sequence data by machine learning // Front. Bioinform. 2024. V. 8. № 3. https://doi.org/10.3389/fbinf.2023.1286883
- Bravi B. Development and use of machine learning algorithms in vaccine target selection // NPJ Vaccines. 2024. V. 9. № 1. P. 15. https://doi.org/10.1038/s41541-023-00795-8
- Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. № 7873. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Kulikova A.V., Diaz D.J., Chen T. et al. Two sequence- and two structure-based ML models have learned different aspects of protein biochemistry // Sci. Rep. 2023. V. 13. № 1. P. 13280. https://doi.org/10.1038/s41598-023-40247-w
- Wang K., Zeng X., Zhou J. et al. BERT-TFBS: A novel BERT-based model for predicting transcription factor binding sites by transfer learning // Brief Bioinform. 2024. V. 25. № 3. https://doi.org/10.1093/bib/bbae195
- Abdullahi T., Singh R., Eickhoff C. Learning to make rare and complex diagnoses with generative AI assistance: Qualitative study of popular large language models // JMIR Med. Educ. 2024. V. 13. № 10. https://doi.org/10.2196/51391
- Lupo U., Sgarbossa D., Bitbol A.-F. Protein language models trained on multiple sequence alignments learn phylogenetic relationships // Nat. Commun. 2022. V. 13. № 1. P. 6298. https://doi.org/10.1038/s41467-022-34032-y
- Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. № 7873. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Kroll A., Ranjan S., Martin K.M. et al. A general model to predict small molecule substrates of enzymes based on machine and deep learning // Nat. Commun. 2023. V. 14. № 1. P. 2787. https://doi.org/10.1038/s41467-023-38347-2
- Clark T., Subramanian V., Jayaraman A. et al. Enhancing antibody affinity through experimental sampling of non-deleterious CDR mutations predicted by machine learning // Commun. Chem. 2023. V. 6. P. 244. https://doi.org/10.1038/s42004-023-01037-7
- Robert Ph.A., Akbar R., Frank R. et al. Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction // Nat. Comput. Sci. 2022. V. 2. № 12. P. 845–865. https://doi.org/10.1038/s43588-022-00372-4
- Marinov T.M., Abu-Shmais A.A., Janke A.K., Georgiev I.S. Design of antigen-specific antibody CDRH3 sequences using AI and germline-based templates // bioRxiv [Preprint]. 2024. https://doi.org/10.1101/2024.032.586241
- Pisetsky D.S. Pathogenesis of autoimmune disease // Nat. Rev. Nephrol. 2023. V. 8. P. 509–524. https://doi.org/10.1038/s41581-023-00720-1
- Mason D.M., Friedensohn S., Weber C.R. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning // Nat. Biomed. Eng. 2021. V. 5. № 6. P. 600–612. https://doi.org/10.1038/s41551-021-00699-9
Supplementary files

