Cytogenetic Effects in Cultures of Human Lymphocytes Exposed to the Herbicide Paraquat
- Authors: Kuzmina N.S.1,2, Ordzhonikidze K.G.1,3, Lapteva N.S.1, Kogarko I.N.2, Petushkova V.V.2, Abilev S.K.1, Rubanovich A.V.1
-
Affiliations:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science
- Issue: Vol 61, No 2 (2025)
- Pages: 12-23
- Section: ОБЩАЯ ГЕНЕТИКА
- URL: https://ogarev-online.ru/0016-6758/article/view/291678
- DOI: https://doi.org/10.31857/S0016675825020021
- EDN: https://elibrary.ru/uwbnic
- ID: 291678
Cite item
Abstract
We conducted the experiments of the short-term (1 hour) testing effect of the herbicide paraquat, one of the strongest inducer of oxidative stress, on cultured blood cells (late G1 stage of the first mitosis, 4 × 10–8 mol/l) of 9 healthy donors. In 60-hour (short-term) and 120-hour (long-term) lymphocyte cultures exposed to paraquat in vitro, the average frequencies of aberrant cells were 4.05 ± 0.55 and 9.42 ± 1.23%, respectively, which significantly exceeds the corresponding control levels: 1.16 ± 0.30 and 1.70 ± 0.50% (p = 0.008 and p = 0.018, respectively). The observed genotoxic effects are primarily due to the induction of simple chromatid aberrations (single fragments), the levels of which were 3.32 ± 0.40 and 8.92 ± 1.40 per 100 cells as a result of short-term and long-term lymphocyte cultivation, respectively (in comparison with 1.03 ± 0.34 and 1.56 ± 0.38 per 100 cells in the corresponding control). The frequencies of paired chromosomal fragments in cell cultures of both types also significantly (or on the trend level) exceeded the control frequencies (p = 0.046 and p = 0.068 for 60- and 120-hour cultures, respectively). No differences were found between 60- and 120-hour unexposed cell cultures in the level of aberrant cells and chromosome aberrations of all types. In contrast, long-term lymphocyte cultures exposed to paraquat demonstrated significantly increased levels of aberrant metaphases and single chromatid fragments compared to short-term exposed cultures (p = 0.001). Long-term effects were shown to be characterized by higher individual values of Cohen's omega (w) – from 0.157 to 0.259, compared to those for 60-hour cultures – 0.057 to 0.153. The obtained data indicate the induction of genomic instability in distant descendants of human lymphocytes exposed to short-term paraquat at the beginning of cultivation, and its individual nature.
About the authors
N. S. Kuzmina
Vavilov Institute of General Genetics, Russian Academy of Sciences; Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science
Author for correspondence.
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 119991
K. G. Ordzhonikidze
Vavilov Institute of General Genetics, Russian Academy of Sciences; Severtsov Institute of Ecology and Evolution, Russian Academy of Science
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 119991
N. S. Lapteva
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991
I. N. Kogarko
Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991
V. V. Petushkova
Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991
S. K. Abilev
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991
A. V. Rubanovich
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: nin-kuzmin@yandex.ru
Russian Federation, Moscow, 119991
References
- Зентов Н.К., Ланкин В.З., Меньщикова Е.Б. Окислительный стресс. Биохимические и патофизиологические аспекты. М: Наука, 2001, 343 с.
- Цейликман В.Э., Лукин А.А. Влияние окислительного стресса на организм человека // Междун. научно-исслед. журн. 2022. Т. 117. № 3–1. С. 206–211. https://doi.org/10.23670/IRJ.2022.117.3.037
- Rubfiaro A.S., Tsegay P.S., Lai Y. et al. Scanning ion conductance microscopy study reveals the disruption of the integrity of the human cell membrane structure by oxidative DNA damage // ACS Appl. Bio Mater. 2021. V. 4. № 2. Р. 1632–1639. https://doi.org/10.1021/acsabm.0c01461
- Fukushima T., Tanaka K., Lim H., Moriyama M. Mechanism of cytotoxicity of paraquat // Environ. Health Prev. Med. 2002. V. 7. № 3. Р. 89–94. https://doi.org/10.1265/ehpm.2002.89
- Cochemé H.M., Murphy M.P. Complex I is the major site of mitochondrial superoxide production by paraquat // J. Biol. Chem. 2008. V. 283. № 4. Р. 1786–1798. https://doi.org/10.1074/jbc.M708597200
- Machigov E. A., Igonina E. V., Sviridova D. A. et al. The genotoxic effect of the paraquat radiomimetic on Escherichia coli bacteria // Biol. Bulletin. 2023. V. 49. № 12. Р. 2486–2494. https://doi.org/10.1134/s106235902212010x
- WHO. Methods for the Analysis of Human Chromosome Aberrations / Eds. Buckton K.E., Evans H.J. WHO. Geneva, 1973. 72 р.
- Вiological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment: Technical reports series № 260. Vienna: Int. Atomic Energy, 1986. 69 р.
- Jovtchev G., Gateva S., Stergios M., Kulekova S. Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro // Environ. Toxicol. 2010. V. 25. № 3. P. 294–303. https://doi.org/10.1002/tox.20503
- Ribas G., Surrallés J., Carbonell E. et al. Genotoxic evaluation of the herbicide paraquat in cultured human lymphocytes // Teratog. Carcinog. Mutagen. 1997. V. 17. № 6. Р. 339–347.
- Gateva S., Kulekova S. Chromosome aberrations and apoptosis induced by Paraquat corresponding with cell cycle delay in human lymphocytes in vitro // J. Environ. Prot. Ecol. 2008. V. 9. № 3. Р. 627–633.
- Petrovská H., Dušinská M. Oxidative DNA damage in human cells induced by paraquat // Altern. Lab. Anim. 1999. V. 27. № 3. Р. 387–395. https://doi.org/10.1177/026119299902700314
- Tajai P., Fedeles B.I., Suriyo T. et al. An engineered cell line lacking OGG1 and MUTYH glycosylases implicates the accumulation of genomic 8-oxoguanine as the basis for paraquat mutagenicity // Free Radic. Biol. Med. 2018. № 116. Р. 64–72. https://doi.org/10.1016/j.freeradbiomed.2017.12.035
- Zienolddiny S., Ryberg D., Haugen A. Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines // Carcinogenesis. 2000. V. 21. № 8. P. 1521–1526.
- Alizadeh S., Anani-Sarab G., Amiri H., Hashemi M. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes // Heliyon. 2022. V. 8. № 7. e09895. https://doi.org/10.1016/j.heliyon.2022.e09895
- Onur B., Çavuşoğlu K., Yalçin E., Acar A. Paraquat toxicity in different cell types of Swiss albino mice // Sci. Rep. 2022. V. 12. № 1. Р. 4818. https://doi.org/10.1038/s41598-022-08961-z
- Acar А., Çavuşoğlu К., Türkmen Z. et al. The investigation of genotoxic, physiological and anatomical effects of paraquat herbicide on Allium cepa L. // Cytologia. 2015. V. 80. № 3. P. 343–351. https://doi.org/10.1508/cytologia.80.343
- Сусков И.И., Кузьмина Н.С., Сускова В.С. и др. Проблема индуцированной геномной нестабильности как основы повышенной заболеваемости у детей, подвергающихся низкоинтенсивному воздействию радиации в малых дозах // Радиац. биология. Радиоэкология. 2006. Т. 46. № 2. С. 167–177.
- Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria // Int. J. Radiat. Biol. 2015. V. 91. № 1. P. 1–12. https://doi.org/10.3109/09553002.2014.934929
- Liu X., Yang H., Liu Z. Signaling pathways involved in paraquat-induced pulmonary toxicity: Molecular mechanisms and potential therapeutic drugs // Int. Immunopharmacol. 2022. V. 113 (Pt A). https://doi.org/10.1016/j.intimp.2022.109301.
- Costantini P., Petronilli V., Colonna R., Bernardi P. On the effects of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide // Toxicology. 1995. V. 99. № 1–2. Р. 77–88. https://doi.org/10.1016/0300-483x(94)02997-9
- Coluccino G., Muraca V.P., Corazza A., Lippe G. Cyclophilin D in mitochondrial dysfunction: A key player in neurodegeneration? // Biomolecules. 2023. V. 13. № 8. Р. 1265. https://doi.org/10.3390/biom13081265
- Milzani A., Dalledonne I., Vailati G., Colombo R. Paraquat induces actin assembly in depolymerizing conditions // FASEB J. 1997. V. 11. № 4. Р. 261–270. https://doi.org/10.1096/fasebj.11.4.9068615
- Wright G., Reichenbecher V., Green T. et al. Paraquat inhibits the processing of human manganese-dependent superoxide dismutase by SF-9 insect cell mitochondria // Exp. Cell Res. 1997. V. 234. № 1. Р. 78–84. https://doi.org/10.1006/excr.1997.3579
- Chang Z.S., Xia J.B., Wu H.Y. et al. Forkhead box O3 protects the heart against paraquat-induced aging-associated phenotypes by upregulating the expression of antioxidant enzymes // Aging Cell. 2019. V. 18. № 5. https://doi.org/10.1111/acel.12990.
Supplementary files
