Метилирование подсемейств ретротранспозона LINE-1 в ворсинах хориона при невынашивании беременности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Невынашивание беременности потенциально связано с нарушениями эпигенетической регуляции генов, ответственных за развитие эмбриона и плаценты. Цель настоящей работы – анализ уровня метилирования различных подсемейств ретротранспозона LINE-1, составляющего около 17% всего генома, в ворсинах хориона спонтанных абортусов первого триместра беременности с различным кариотипом, включая наиболее распространенные анеуплоидии. Был проведен анализ профиля метилирования в промоторе ретротранспозона LINE-1 с помощью таргетного бисульфитного массового параллельного секвенирования в ворсинах хориона медицинских абортусов (n = 39), спонтанных абортусов с нормальным кариотипом (n = 173), трисомией 16 (n = 62) и моносомией X (n = 46), а также в лимфоцитах периферической крови здоровых добровольцев (n = 17). Уровень метилирования подсемейств ретротранспозона LINE-1 в контрольных группах лимфоцитов взрослых индивидов и в ворсинах хориона медицинских абортусов был наибольшим для эволюционно молодых подсемейств L1HS, меньшим – для более древних подсемейств L1PA2, L1PA3 и минимальным для еще более древнего подсемейства L1PA4. В группах спонтанных абортусов наблюдался повышенный уровень метилирования LINE-1, причем этот эффект был более выражен для более древних подсемейств LINE-1. Выявленные закономерности указывают на меньший контроль за более древними подсемействами ретротранспозона LINE-1 в геноме человека, которые потенциально могут использоваться в качестве регуляторных элементов для расположенных рядом генов, участвующих в эмбриональном развитии. Повышение уровня метилирования таких последовательностей может нарушать развитие плаценты и эмбриона и вносить определенный вклад в невынашивание беременности.

Об авторах

С. А. Васильев

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Автор, ответственный за переписку.
Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

Т. В. Никитина

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

Е. А. Саженова

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

И. В. Лушников

Национальный исследовательский Томский государственный университет

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

О. Ю. Васильева

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

А. С. Ушакова

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук; Национальный исследовательский Томский государственный университет

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск; Россия, 634050, Томск

А. С. Зуев

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

С. А. Филатова

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук; Национальный исследовательский Томский государственный университет

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск; Россия, 634050, Томск

Е. Н. Толмачева

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

В. В. Деменева

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

И. Н. Лебедев

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: stanislav.vasilyev@medgenetics.ru
Россия, 634050, Томск

Список литературы

  1. Quenby S., Gallos I.D., Dhillon-Smith R.K. et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss // Lancet. 2021. V. 397. № 10285. P. 1658–1667. https://doi.org/10.1016/S0140-6736(21)00682-6
  2. Li T.C., Makris M., Tomsu M. et al. Recurrent miscarriage: aetiology, management and prognosis // Hum. Reprod. Update. 2002. V. 8. № 5. P. 463–481. https://doi.org/10.1093/humupd/8.5.463
  3. Red-Horse K., Zhou Y., Genbacev O. et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface // J. Clin. Invest. 2004. V. 114. № 6. P. 744–754. https://doi.org/10.1172/JCI22991
  4. Jauniaux E., Poston L., Burton G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution // Hum. Reprod. Update. 2006. V. 12. № 6. P. 747–755. https://doi.org/:dml016
  5. Shridhar V., Chu T., Simhan H. et al. High-resolution analysis of the human placental DNA methylome in early gestation // Prenat. Diagn. 2020. V. 40. № 4. P. 481–491. https://doi.org/10.1002/pd.5618
  6. Robinson W.P., Price E.M. The human placental methylome // Cold Spring Harbor Perspect. Med. 2015. V. 5. № 5. https://doi.org/10.1101/cshperspect.a023044
  7. Vlahos A., Mansell T., Saffery R. et al. Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome // PLoS Genet. 2019. V. 15. № 8. https://doi.org/10.1371/journal.pgen.1008236
  8. Etchegaray E., Naville M., Volff J.N. et al. Transposable element-derived sequences in vertebrate development // Mob. DNA. 2021. V. 12. № 1. P. 1. https://doi.org/10.1186/s13100-020-00229-5
  9. Grow E.J., Flynn R.A., Chavez S.L. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells // Nature. 2015. V. 522. № 7555. P. 221–225. https://doi.org/10.1038/nature14308
  10. Reiss D., Zhang Y., Mager D.L. Widely variable endogenous retroviral methylation levels in human placenta // Nucl. Ac. Res. 2007. V. 35. № 14. P. 4743–4754. https://doi.org/10.1093/nar/gkm455
  11. Lee J., Cordaux R., Han K. et al. Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons // Gene. 2007. V. 390. № 1–2. P. 18–27. https://doi.org/10.1016/j.gene.2006.08.029
  12. Khan H., Smit A., Boissinot S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates // Genome Res. 2006. V. 16. № 1. P. 78–87. https://doi.org/10.1101/gr.4001406
  13. Boissinot S., Sookdeo A. The Evolution of LINE-1 in Vertebrates // Genome Biol. Evol. 2016. V. 8. № 12. P. 3485–3507. https://doi.org/10.1093/gbe/evw247
  14. Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Y. et al. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy // J. Assist. Reprod. Genet. 2021. V. 38. № 1. P. 139–149. https://doi.org/10.1007/s10815-020-02003-1
  15. Lebedev I.N., Ostroverkhova N.V., Nikitina T.V. et al. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis // Eur. J. Hum. Genet. 2004. V. 12. № 7. P. 513–520. https://doi.org/10.1038/sj.ejhg.5201178
  16. Vasilyev S.A., Timoshevsky V.A., Lebedev I.N. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239 // Russ. J. Genetics. 2010. V. 46. № 11. P. 1381–1385. https://doi.org/10.1134/s1022795410110141
  17. Vasilyev S.A., Markov A.V., Vasilyeva O.Y. et al. Method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter // MethodsX. 2021. V. 8. https://doi.org/10.1016/j.mex.2021.101445
  18. Fernandes J.D., Zamudio-Hurtado A., Clawson H. et al. The UCSC repeat browser allows discovery and visualization of evolutionary conflict across repeat families // Mob. DNA. 2020. V. 11. P. 13. https://doi.org/10.1186/s13100-020-00208-w
  19. Zheng Y., Joyce B.T., Liu L. et al. Prediction of genome-wide DNA methylation in repetitive elements // Nucl. Ac. Res. 2017. V. 45. № 15. P. 8697–8711. https://doi.org/10.1093/nar/gkx587
  20. Zadora J., Singh M., Herse F. et al. Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker // Circulation. 2017. V. 136. № 19. P. 1824–1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110
  21. Criscione S.W., Theodosakis N., Micevic G. et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts // BMC Genomics. 2016. V. 17. P. 463. https://doi.org/10.1186/s12864-016-2800-5
  22. Chishima T., Iwakiri J., Hamada M. Identification of transposable elements contributing to tissue-specific expression of long non-coding RNAs // Genes (Basel). 2018. V. 9. № 1. https://doi.org/10.3390/genes9010023
  23. Pourrajab F., Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials) // Heliyon. 2021. V. 7. № 1. https://doi.org/10.1016/j.heliyon.2021.e06029
  24. Demeneva V.V., Tolmacheva E.N., Nikitina T.V. et al. Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy // Vavil. Zh. Genet. Selektsii. 2023. V. 27. № 1. P. 63–71. https://doi.org/10.18699/VJGB-23-09

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

Скачать (338KB)
4.

Скачать (125KB)
5.

Скачать (183KB)

© С.А. Васильев, В.В. Деменева, Е.Н. Толмачева, С.А. Филатова, А.С. Зуев, А.С. Ушакова, О.Ю. Васильева, И.В. Лушников, Е.А. Саженова, Т.В. Никитина, И.Н. Лебедев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».