A Robust Test System for DNA Identification of Raccoon Dogs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To establish a system for DNA identification of biological samples of the raccoon dog (Nyctereutes procyonoides), we carried out a study of polymorphism of 39 microsatellite loci and three sex loci specific to various species of the Canidae family. This resulted in the development of the NPlex test system, which includes 14 autosomal STRs and two sex loci. The test system has been validated for use in forensic identification of racoon dogs based on biological traces (such as traces of blood and secretions, fragments of muscle tissue or bones, dermis and hair, etc.) found at crime scenes, as well as for establishing biological relationship of animals of this species. Validation efforts were performed in accordance with the protocol of the Scientific Working Group on DNA Analysis Methods.

About the authors

A. E. Hrebianchuk

State Forensic Examination Committee of the Republic of Belarus

Author for correspondence.
Email: iamsanya94@mail.ru
Belarus, 220073, Minsk

O. N. Lukashkova

Scientific and Practical Center of the State Forensic Examination Committee of the Republic Belarus

Email: iamsanya94@mail.ru
Belarus, 220114, Minsk

S. A. Kotava

Scientific and Practical Center of the State Forensic Examination Committee of the Republic Belarus

Email: iamsanya94@mail.ru
Belarus, 220114, Minsk

I. S. Tsybovsky

RUP “BelJurZabespjachjenne”

Email: iamsanya94@mail.ru
Belarus, 220069, Minsk

References

  1. Yan S.Q., Li Y.M., Bai C.Y. et al. Development and characterization of polymorphic microsatellite markers for Chinese raccoon dog (Nyctereutes procyonoides procyonoides) // Genet. Mol. Res. 2013. V. 12. P. 6351–6355. https://doi.org/10.4238/2013.December.6.2
  2. Hong Y., Kim K.S., Lee H., Min M.S. Population genetic study of the raccoon dog (Nyctereutes procyonoides) in South Korea using newly developed 12 microsatellite markers // Genes & Genet. Systems. 2013. V. 88. № 1. P. 69–76. https://doi.org/10.1266/ggs.88.69
  3. Paulauskas A., Griciuvienė L., Juknelyte S. et al. Genetic diversity and population structure of raccoon dog (Nyctereutes procyonoides) in invaded areas // XMAT. 2014. P. 78. Antalya, Turkey. https://www.neobiota.eu/wp/wp-content/uploads/NEOBIOTA-2014-Abstract-Book.pdf
  4. Nørgaard L.S., Mikkelsen D.M.G., Elmeros M. et al. Population genomics of the raccoon dog (Nyctereutes procyonoides) in Denmark: Insights into invasion history and population development // Biol. Invasions. 2017. V. 19. № 5. P. 1637–1652. https://doi.org/10.1007/s10530-017-1385-5
  5. Oh S.Y., Kim S.A., Kim J.Y. et al. Detection of antibodies against the rabies virus in Korean raccoon dogs (Nyctereutes procyonoides koreensis) // J. Zoo and Wildlife Med. 2012. V. 43. № 1. P. 174–176. https://doi.org/10.1638/2011-0063.1
  6. Kido N., Itabashi M., Takahashi M., Futami M. Epidemiology of sarcoptic mange in free-ranging raccoon dogs (Nyctereutes procyonoides) in Yokohama // Jap. Veter. Parasitology. 2013. V. 191. № 1–2. P. 102–107. https://doi.org/10.1016/j.vetpar.2012.07.026
  7. Bagrade G., Deksne G., Ozoliņa Z. et al. Echinococcus multilocularis in foxes and raccoon dogs: an increasing concern for Baltic countries // Parasites & Vectors. 2016. V. 9. № 1. P. 1–9. https://doi.org/10.1186/s13071-016-1891-9
  8. Griciuvienė L., Paulauskas A., Radzijevskaja J. et al. Impact of anthropogenic pressure on the formation of population structure and genetic diversity of raccoon dog Nyctereutes procyonoides // Curr. Zool. 2016. V. 62. № 5. P. 413–420. https://doi.org/10.1093/cz/zow038
  9. Kauhala K., Kowalczyk R. Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna // Curr. Zool. 2011. V. 57. № 5. P. 584–598. https://doi.org/10.1093/czoolo/57.5.584
  10. Lever C. Naturalized Mammals of the World. London: Longman, 1985. Available from: https://www.cabi.org/isc/abstract/19860537058
  11. Deinet S., Ieronymidou C., McRae L. et al. Wildlife comeback in Europe: The recovery of selected mammal and bird species // Final Rep. to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council. London, UK, 2013. Available from: https://rewildingeurope.com/wp-content/uploads/20-13/11/Wildlife-Comeback-in-Europe-the-recovery-of-selected-mammal-and-bird-species.pdf
  12. Sillero-Zubiri C., Hoffmann M., Macdonald D.W. Canids: Foxes, wolves, jackals, and dogs // Status Survey and Conservation Action Plan. 2004. V. 95. Gland, Switzerland: IUCN, available from: https://www.carnivoreconservation.org/files/actionplans/canids.pdf
  13. Boom R.C.J.A., Sol C.J., Salimans M.M. et al. Rapid and simple method for purification of nucleic acids // J. Clin. Microbiol. 1990. V. 28. № 3. P. 495–503. https://doi.org/10.1128/jcm.28.3.495-503.1990
  14. Benson D.A., Karsch-Mizrachi I., Lipman D.J. et al. GenBank // Nucl. Acids Res. 2005. V. 34. P. D16–D20. https://doi.org/10.1093/nar/gkj157
  15. Hall T., Biosciences I., Carlsbad C. BioEdit: An important software for molecular biology // GERF Bull. Biosci. 2011. V. 2. № 1. P. 60–61. https://www.researchgate.net/profile/Ahmed-Alzohairy/publication/2585-65830_BioEdit_An_important_software_for_molecular_biology/links/0deec528a87d3f2ee0000000/BioEdit-An-important-software-for-molecular-biology.pdf
  16. Peakall R.O.D., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. № 1. P. 288–295. https://doi.org/10.1093/bioinformatics/bts460
  17. Excoffier L., Lischer H. An integrated software package for population genetics data analysis // Comput. and Mol. Popul. Genet. Lab (CMPG). 2006. Berne, Switzerland: Institute Zool., Univ. Berne, PMID: 19325852.
  18. Van Oosterhout C., Hutchinson W.F., Wills D.P., Shipley P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. 2004. V. 4. № 3. P. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  19. Marshall T.C., Slate J.B.K.E., Kruuk L.E.B., Pemberton J.M. Statistical confidence for likelihood – based paternity inference in natural populations // Mol. Ecol. 1998. V. 7. № 5. P. 639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  20. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. № 2. P. 945–959. https://doi.org/10.1534/genetics.116.195164
  21. Earl D.A., VonHoldt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method // Conservation Genet. Res. 2012. V. 4. № 2. P. 359–361. https://doi.org/10.1007/s12686-011-9548-7
  22. Lischer H.E., Excoffier L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs // Bioinformatics. 2012. V. 28. № 2. P. 298–299. https://doi.org/10.1093/bioinformatics/btr642
  23. DeNise S., Johnston E., Halverson J. et al. Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers // Animal Genet. 2004. V. 35. № 1. P. 14–17. https://doi.org/10.1046/j.1365-2052.2003.01074.x
  24. Caniglia R., Fabbri E., Greco C. et al. Forensic DNA against wildlife poaching: Identification of a serial wolf killing in Italy // Forensic Sci. Int. Genet. 2010. V. 4. № 5. P. 334–338. https://doi.org/10.1016/j.fsigen.2009.10.012
  25. Dayton M., Koskinen M.T., Tom B.K. et al. Developmental validation of short tandem repeat reagent kit for forensic DNA profiling of canine biological material // Croatian Med. J. 2009. V. 50. № 3. P. 268–285. https://doi.org/10.3325/cmj.2009.50.268
  26. Whiteside H.M., Dawson D.A., Soulsbury C.D., Harris S. Mother knows best: Dominant females determine offspring dispersal in red foxes (Vulpes vulpes) // PLoS One. 2011. V. 6. № 7. P. e22145. https://doi.org/10.1371/journal.pone.0022145
  27. Seddon J.M. Canid-specific primers for molecular sexing using tissue or non-invasive samples // Conservation Genet. 2005. V. 6. № 1. P. 147–149. https://doi.org/10.1007/s10592-004-7734-9
  28. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms // Am. J. Hum. Genet. 1980. V. 32. № 3. P. 314. PMID: 6247908.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (365KB)
3.

Download (201KB)
4.

Download (117KB)
5.

Download (356KB)

Copyright (c) 2023 А.Е. Гребенчук, О.Н. Лукашкова, С.А. Котова, И.С. Цыбовский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».