Does Continuous Lighting Induce Premature Leaf Senescence?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

using 6 species of aboriginal (Geranium sylvaticum, Geum rivale, Potentilla erecta) and introduced (Geranium himalayense, Geum coccineum, Potentilla atrosanguinea) plants of the Subarctic, it was shown that under continuous lighting (CL) in climate chambers (at constant temperature, humidity, light intensity and spectral composition), plants exhibit a complex of physiological and biochemical changes similar to those that occur during natural leaf aging in nature, namely, the loss of chlorophyll and carotenoids with an increase in the chlorophyll a/b ratio and a decrease in the chlorophyll/carotenoid ratio, a decrease in Fv/Fm values, an increase in the content of anthocyanins, hydrogen peroxide and lipid peroxidation products. Based on the data presented in this work and previously obtained data, as well as an analysis of the literature, it was concluded that CL is not a factor inducing the senescence, as some authors suggest, but, like other stressors, causes numerous changes and disturbances in sensitive species, some of which are similar to those observed during natural aging of leaves.

About the authors

T. G Shibaeva

Institute of Biology, Karelian Research Center, Russian Academy of Science

Email: shibaeva@krc.karelia.ru
ORCID iD: 0000-0003-1287-3864
Dr. Sci. (Biology), Leading Researcher Petrozavodsk, Russian Federation

A. A Rubaeva

Institute of Biology, Karelian Research Center, Russian Academy of Science

Email: arubaeva@krc.karelia.ru
ORCID iD: 0000-0002-7772-2760
PhD Student Petrozavodsk, Russian Federation

E. G Sherudilo

Institute of Biology, Karelian Research Center, Russian Academy of Science

Email: sherudil@krc.karelia.ru
ORCID iD: 0000-0001-7168-8226
PhD in Biology, Senior Researcher Petrozavodsk, Russian Federation

I. A Levkin

Institute of Biology, Karelian Research Center, Russian Academy of Science

Email: levkin-556@mail.ru
PhD student Petrozavodsk, Russian Federation

A. F Titov

Institute of Biology, Karelian Research Center, Russian Academy of Science

Email: titov@krc.karelia.ru
ORCID iD: 0000-0001-6880-2411
Dr. Sci. (Biology), Corresponding Member of the Russian Academy of Sciences, Chief Researcher Petrozavodsk, Russian Federation

References

  1. Hao X., Guo X., Lanoue J., Zhang Y., Cao R., Zheng J., Little C., Leonardos D., Kholsa S., Grodzinski B., Yelton M. A review on smart application of supplemental lighting in greenhouse fruiting vegetable production // Acta Hortic. 2018. V. 1227. P. 499–506. https://doi.org/10.17660/ActaHortic.2018.1227.63
  2. Shibaeva T.G., Mamaev A.V., Sherudilo E.G., Titov A.F. The role of photosynthetic daily light integral in plant response to extended photoperiods // Russ. J. Plant Physiol. 2022. V. 69:7. https://doi.org/10.1134/S1021443722010216
  3. Sysoeva M.I., Markovskaya E.F., Shibaeva T.G. Plants under continuous light: a review // Plant Stress. 2010. V. 4. P. 5–17.
  4. Velez-Ramirez A.I., Van Ieperen W., Vreugdenhil D., Millenaar F.F. Plants under continuous light // Trends Plant Sci. 2011. V. 16. P. 310–318. https://doi.org/10.1016/j.tplants.2011.02.003
  5. Shibaeva T.G., Titov A.F. Photoperiod stress in plants: a new look at plant response to abnormal light-dark cycles // Russ. J. Plant Physiol. 2025. V. 72:15. https://doi.org/10.1134/S102144372560165X
  6. Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Titov A.F. Continuous LED lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens // Plants. 2022. V. 11:176. https://doi.org/10.3390/plants11020176
  7. Shibaeva T.G., Mamaev A.V., Titov A.F. Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting // Russ. J. Plant Physiol. 2023. V. 70:15. https://doi.org/10.1134/S1021443722602646
  8. Arthur J.W., Guthrie J.D., Newell J.M. Some effects of artificial climates on the growth and chemical composition of plants // Amer. J. Bot. 1930. V. 17. P. 416–482. https://doi.org/10.2307/2435930
  9. Withrow A.P., Withrow R.B. Photoperiodic chlorosis in tomato // Plant Physiol. 1949. V. 24. P. 657–663. https://doi.org/10.1104/pp.24.4.657
  10. Hillman W.S. Injury of tomato plants by continuous light and unfavorable photoperiodic cycles // Amer. J. Bot. 1956. V. 43. P. 89–96. https://doi.org/10.2307/2438816
  11. Cushman K.E., Tibbitts T.W., Sharkey T.D., Wise R.R. Constant-light injury of potato: temporal and spatial patterns of carbon dioxide assimilation, starch content, chloroplast integrity, and necrotic lesions // J. Amer. Soc. Hort. Sci. 1995. V. 120. P. 1032–1040. https://doi.org/10.21273/JASHS.120.6.1032
  12. Cushman K.E., Tibbitts T.W. The role of ethylene in the development of constant-light injury of potato and tomato // J. Amer. Soc. Hort. Sci. 1998. V. 123. P. 239–245. https://doi.org/10.21273/JASHS.123.2.239
  13. Lim P.O., Kim H.J., Nam H.G. Leaf senescence // Annu. Rev. Plant Biol. 2007. V. 58. P. 115–136. https://doi.org/10.1146/annurev.arplant.57.032905.105316
  14. Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Shmakova N.Y., Titov A.F. Response of native and non-native subarctic plant species to continuous illumination by natural and artificial light // Plants. 2024. V. 13:2742. https://doi.org/10.3390/plants13192742
  15. Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents // Biochem. Soc. Trans. 1983. V. 603. P. 591–592. https://doi.org/10.1042/bst0110591
  16. Lichtenthaler H.K. Chlorophylls and carotenoids: pigment of photosynthetic biomembranes // Methods Enzymol. 1987. V. 148. P. 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  17. Kolupaev Y.E., Fisova E.N., Yastreb T.O., Ryabchun N.I., Kirichenko V.V. Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought // Russ. J. Plant Physiol. 2019. V. 66. P. 59–66. https://doi.org/10.1134/S1021443719010084
  18. Heath R.L., Packer L. Photoperioxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. P. 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  19. Velikova V., Yordanov I., Edreva A. Oxidative stress and some antioxidant system in acid rain-treated bean plants: protective role of exogenous polyamines // Plant Sci. 2000. V. 151. P. 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
  20. Wheeler R.M. Potato and human exploration of space: some observations from NASA-sponsored controlled environment studies // Potato Res. 2006. V. 49. P. 67–90. https://doi.org/10.1007/s11540-006-9003-4
  21. Murage E.N., Masuda M. Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes // Sci. Hort. 1997. V. 70. P. 269–279. https://doi.org/10.1016/s0304-4238(97)00078-2
  22. Dorais M., Gosselin A. Physiological response of greenhouse vegetable crops to supplemental lighting // Acta Hortic. 2002. V. 580. P. 59–67. https://doi.org/10.17660/ActaHortic.2002.580.6
  23. Wolff S.A., Langerud A. Fruit yield, starch content and leaf chlorosis in cucumber exposed to continuous lighting // Eur. J. Hortic. Sci. 2006. V. 71. P. 259–261. https://doi.org/10.17660/eJHS.2006/173706
  24. Haque M.S., Kjaer K.H., Rosenqvist E., Ottosen C.-O. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species // Front. Plant Sci. 2015. V. 6:522. https://doi.org/10.3389/fpls.2015.00522
  25. Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M., Heuvelink E., Millenaar F.F. The role of photosynthetic daily light integral in plant response to extended photoperiods // Russ. J. Plant Physiol. 2022. V. 69:7. https://doi.org/10.1134/s1021443722010216
  26. Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M., Heuvelink E., Millenaar F.F. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato // Nat. Commun. 2014. V. 5:4549. https://doi.org/10.1038/ncomms5549
  27. Matsuda R., Ozawa N., Fujiwara K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences // Sci. Hortic. 2014. V. 170. P. 150–158. https://doi.org/10.1016/j.scienta.2014.03.014
  28. Pham M.D., Hwang H., Park S.W., Cui M., Lee H., Chun C. Leaf chlorosis, epinasty, carbohydrate contents and growth of tomato show different responses to the red/blue wavelength ratio under continuous light // Plant Physiol. Biochem. 2019. V. 141. P. 477–486. https://doi.org/10.1016/j.plaphy.2019.06.004
  29. Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression // J. Exp. Bot. 2012. V. 63. P. 1637–1661. https://doi.org/10.1093/jxb/ers013
  30. Zhu M.-D., Chen X.-L., Zhu X.-Y., Xing Y.-D., Du D., Zhang Y.-Y., Liu M.-M., Zhang Q.-L., Lu X., Peng S.-S., He G.-H., Zhang T.-Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice // J. Integr. Agric. 2020. V. 19. P. 2150–2164. https://doi.org/10.1016/S2095-3119(19)62814-5
  31. Pammenter N.W., Loreto F., Sharkey T.D. End product feedback effects on photosynthetic electron transport // Photosynth. Res. 1993. V. 35. P. 5–14. https://doi.org/10.1007/BF02185407
  32. Van Gestel N.C., Nesbit A.D., Gordon E.P., Green C., Paré P.W., Thompson L., Peffley E.B., Tissue D.T. Continuous light may induce photosynthetic downregulation in onion — consequences for growth and biomass partitioning // Physiol. Plant. 2005. V. 125. P. 235–246. https://doi.org/10.1111/j.1399-3054.2005.00560.x
  33. Smith A.M., Stitt M. Coordination of carbon supply and plant growth // Plant Cell Environ. 2007. V. 30. P. 1126–1149. https://doi.org/10.1111/j.1365-3040.2007.01708.x
  34. Fischer A.M. The complex regulation of senescence // Crit. Rev. Plant Sci. 2012. V. 31. P. 124–147. https://doi.org/10.1080/07352689.2011.616065
  35. Thomas H. Senescence, ageing and death of the whole plant // New Phytol. 2013. V. 197. P. 696–711. https://doi.org/10.1111/nph.12047
  36. Swartzberg D., Hanael R., Granot D. Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination // Plant Biol. 2011. V. 13. P. 439–444. https://doi.org/10.1111/j.1438-8677.2010.00376.x
  37. Roeber V.M., Bajaj I., Rohde M., Schmulling T., Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants // Plant Cell Environ. 2021. V. 44:645. https://doi.org/10.1111/pce.13948
  38. Roeber V.M., Schmülling T., Cortleven A. The photoperiod: handling and causing stress in plants // Front. Plant Sci. 2022. V. 12:781988. https://doi.org/10.3389/fpls.2021.781988
  39. Haque M.S., Kjaer K.H., Rosenqvist E., Ottosen C.-O. Recovery of tomato (Solanum lycopersicum L.) leaves form continuous light induced injury // J. Plant Physiol. 2015. V. 185. P. 24–30. https://doi.org/10.1016/j.jplph.2015.06.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).