Spin-pumping size effect
- Autores: Bebenin N.G.1
-
Afiliações:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 126, Nº 3 (2025)
- Páginas: 273-278
- Seção: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://ogarev-online.ru/0015-3230/article/view/306445
- DOI: https://doi.org/10.31857/S0015323025030037
- EDN: https://elibrary.ru/imedyv
- ID: 306445
Citar
Resumo
The spatial distribution of magnetization oscillations of pure spin current induced in a thin layer of a non-magnetic conductor due to spin pumping is theoretically investigated. The influence of boundary conditions is studied. It is shown that if the oscillation frequency is lower than the spin relaxation frequency, the voltage at the surface of the conductor layer due to the inverse spin Hall effect is maximum when the layer thickness is close to the spin diffusion length.
Palavras-chave
Sobre autores
N. Bebenin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bebenin@imp.uran.ru
Ekaterinburg, 620108 Russia
Bibliografia
- Dyakonov M.I. (Ed.) Spin Physics in Semiconductor. Second Edition. Springer International Publishing AG, 2017.
- Maekawa S., Kikkawa T., Chudo H., Ieda J., Saitoh E. Spin and spin current—From fundamentals to recent progress // J. Appl. Phys. 2023. V. 133. Р. 020902.
- Hirohata A., Yamada K., Nakatani Y., Prejbeanu I.-L., Diény B., Pirro P., Hillebrands B.J. Review on spintronics: Principles and device applications // J. Magn. Magn. Mat. 2020. V. 509. P. 166711.
- Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics // J. Appl. Phys. 2016. V. 120. P. 140901.
- Бебенин Н.Г. Спиновая диффузия и колебания намагниченности при высокочастотной спиновой инжекции // Письма в ЖЭТФ. 2023. Т. 118. С. 338.
- Bender S.A., Tserkovnyak Y. Interfacial spin and heat transfer between metals and magnetic insulators // Phys. Rev. B. 2015. V. 91. P. 140402(R).
- Viglin N.A., Ustinov V.V., Demokritov S.O., Shorikov A.O., Bebenin N.G., Tsvelikhovskaya V.M., Pavlov T.N., Patrakov E.I. Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices // Phys. Rev. B. 2017. V. 96. P. 235303.
- Виглин Н.А., Никулин Ю.В., Цвелиховская В.М., Павлов Т.Н., Проглядо В.В. Спиновый транспорт в полупроводниках InSb с различной плотностью электронного газа // ЖЭТФ. 2022. Т. 134. С. 866.
- Ku J.-H., Chang J., Kim H., Eom J. Effective spin injection in Au film from Permalloy // Appl. Phys. Lett. 2006. V. 88. P. 172510.
- Ament W.S., Rado G.T. Electromagnetic effects of spin wave resonance in ferromagnetic metals // Phys. Rev. 1955. V. 97. P. 1558.
- Bass J., Pratt W.P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review // J. Phys.: Condens. Matter. 2007. V. 19. P. 183201.
- Устинов В.В., Наумова Л.И., Заворницын Р.С., Ясюлевич И.А., Максимова И.К., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Миляев М.А. Размерные эффекты в магнитосопротивлении нанослоев тантала со спин-орбитальным взаимодействием // ЖЭТФ. 2024. Т. 165. С. 114.
- Li J., Appelbaum I. Modeling spin transport with currentsensing spin detectors // Appl. Phys. Lett. 2009. V. 95. P. 152501.
- Wei D., Obstbaum M., Ribow M., Back C.H., Woltersdorf G. Spin Hall voltages from a.c. and d.c. spin currents // Nat. Commun. 2014. V. 5. P. 3768.
- Tao X., Liu Q., Miao B., Yu R., Feng Z., Sun L., You B., Du J., Chen K., Zhang S., Zhang L., Yuan Z., Wu D., Ding H. Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: The role of the interface spin loss // Sci. Adv. 2018. V. 4. P. eaat1670.
Arquivos suplementares
