Nitriding of the iron-titanium phase: First-principles calculations based on experimental data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A fundamental understanding of the effect of nitriding, which is used to improve the mechanical properties of surfaces, is required to control the effect of nitriding. Modern methods of quantum mechanical modelling make it possible to carry out cost-effective and reliable studies of the mechanisms of nitriding effects on surfaces. In this paper, the effect of nitriding on the structure and mechanical properties of titanised steel using the FeTi model is studied on the basis of density functional theory calculations. Two cases of nitrogen presence in the Fe–Ti crystal are considered: uniform distribution and nitrogen clustering. On the basis of calculations of the formation energy and analysis of the population of crystal Hamilton orbitals, it is found that higher stability of FeTi is achieved at low nitrogen concentrations up to 5.4% when nitrogen atoms are uniformly distributed, whereas in the case of nitrogen clustering FeTi is more stable at higher nitrogen concentrations from 3.7% to 7.4%. The mechanical properties of nitrogen-containing FeTi suggest that Young's modulus and shear modulus increase with increasing nitrogen concentration up to 5.4%. The results obtained not only provide fundamental knowledge about the effect of nitriding of titanised iron-based steels, but also provide new knowledge necessary for planning experimental studies.

About the authors

A. A. Kistanov

Metals and alloys under extreme conditions laboratory, Ufa University of Science and Technology

Email: elena.a.korznikova@gmail.com
Ufa, 450076 Russia

A. Yu. Nazarov

Metals and alloys under extreme conditions laboratory, Ufa University of Science and Technology

Author for correspondence.
Email: elena.a.korznikova@gmail.com
Ufa, 450076 Russia

E. A. Korznikova

Metals and alloys under extreme conditions laboratory, Ufa University of Science and Technology; Mirnyi Polytechnic Institute, Branch of North-Eastern Federal University

Email: elena.a.korznikova@gmail.com
Ufa, 450076 Russia; Mirnyi, Republic of Sakha (Yakutia), 678170 Russia

References

  1. Söderholm P. The green economy transition: the challenges of technological change for sustainability // Sustain Earth. 2020. V. 3. No. 6.
  2. Yang P., Huang N., Leng Y.X., Chen J.Y., Sun H., Wang J., Chen F., Chu P.K. In vivo study of Ti-O thin film fabricated by PIII // Surf. Coat. Technol. 2002. V. 156. No. 1–3. P. 284–288.
  3. Weng Y., Song Q., Zhou Y., Zhang L., Wang J., Chen J., Leng Y., Li S., Huang N. Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents // Biomaterials. 2011. V. 32. No. 5. P. 1253–1263.
  4. Kwon H., Park Y., Nam U.H., Lee E., Byon E. Comparative Research on Corrosion Resistant Non-Skid Al and Al-3%Ti Coating Fabricated by Twin Wire arc Spraying // Korean J. Met. Mater. 2023. V. 61. P. 242–251.
  5. Cao H., Liu F., Hao L., Qi F., Ouyang X., Zhao N., Liao B. High temperature tribological performance and thermal conductivity of thick Ti/Ti-DLC multilayer coatings with the application potential for Al alloy pistons // Diam. Relat. Mater. 2021. V. 117. P. 108466.
  6. Dang N.M., Lin W-Y., Wang Z-Y., Alidokht S.A., Chromik R.R., Chen T.Y-F., Lin M-T. Mechanical Properties and Residual Stress Measurement of TiN/Ti Duplex Coating Using HiPIMS TiN on Cold Spray Ti // Coatings. 2022. V. 12. № 6. P. 759.
  7. Pawłowski Ł., Bartmanski M., Mielewczyk-Gryń A., Zielinski A. Effects of Surface Pretreatment of Titanium Substrates on Properties of Electrophoretically Deposited Biopolymer Chitosan/Eudragit E 100 Coatings // Coatings. 2021. V. 11. № 9. P. 1120.
  8. Gao J., Xu F., Ma Z., Shi L., Wang X., Zuo D. Adherent diamond coating deposited on Ti by ultrasonic after carbonization pretreatment // Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 2019. 0(0). P. 1–10.
  9. Egorov I., Fomin A. Deposition of a titanium coating on a steel base by contact welding and study of the resulting layered system structure // J. Phys. Conf. Ser. 2020. V. 1695. P. 012175.
  10. Vardanyan E.L., Ramazanov K.N., Nagimov R.Sh., Nazarov A.Yu. Properties of intermetallic Ti-Al based coatings deposited onultrafine grained martensitic steel // Yu. Surf. Coat. Technol. 2020. V. 389. P. 125657.
  11. Windmann M., Röttger A., Theisen W. Formation of intermetallic phases in Al-coated hot-stamped 22MnB5 sheets in terms of coating thickness and Si content // Surf. Coat. Technol. 2014. V. 246. P. 17–25.
  12. Lobzenko I., Shiihara Y., Sakakibara A., Uchiyama Y., Umeno Y., Todaka Y. Chemisorption enhancement of single carbon and oxygen atoms near the grain boundary on Fe surface: ab initio study // Appl. Surf. Sci. 2019. V. 493. P. 1042–1047.
  13. Brodland G.W. How computational models can help unlock biological systems // Cell Dev. Biol. 2015. V. 47–48. P. 62–73.
  14. Rouse I., Power D., Brandt E.G., Schneemilch M., Kotsis K., Quirke N., Lyubartsev A.P., Lobaskin V. First principles characterisation of bio-nano interface // Phys. Chem. Chem. Phys. 2021. V. 23. P. 13473–13482.
  15. Diaz Ochoa J.G. A unified method for assessing the observability of dynamic complex systems // Comput. Biol. Med. 2023. V. 160. P. 107012.
  16. Zimmerman J., Lindemann Z., Golański D., Chmielewski T., Włosiński W. Modeling residual stresses generated in Ti coatings thermally sprayed on Al2O3 substrates // Bull. Pol. Acad. Sci.: Tech. Sci. 2013. V. 61. No. 2. P. 515–525.
  17. Wang L., Ren J., Zhao Y., Ji V., Huabing L., Liu M., Wang Z., Jiang C., Zhanyong W. Effect of Ti microparticles on the microstructure and properties of Ni-Ti composite coating prepared by electrodeposition // J. Alloys Compd. 2022. V. 908. P. 164313.
  18. Park J., Yu N., Jang D., Jung E., Noh H., Moon J., Kil D., Shong B. Adsorption of Titanium Halides on Nitride and Oxide Surfaces During Atomic Layer Deposition: A DFT Study // Coatings. 2020. V. 10. No. 8. P. 712.
  19. Khadraoui A., Bentayeb F. First-Principles Study of Hydrogen Storage in Fe-Ti System // Defect and Diffusion Forum. 2015. V. 365. P. 266–271.
  20. Buchinger J., Koutná N., Kirnbauer A., Holec D., Mayrhofer P. Heavy-element-alloying for toughness enhancement of hard nitrides on the example Ti-W-N // Acta Mater. 2022. V. 231. P. 117897.
  21. Fedotova A. Analysis of nitride hardening and technology for small-batch production // In Science intensive technologies in mechanical engineering. 2020. V. 2020. No. 6. P. 12–15.
  22. Maisuradze M.V., Ryzhkov M.A., Belikov S.V., Kornienko O.Y., Karabanalov M.S., Zhilyakov A.Y. Cementation, nitrocementation and nitriding of steel products // Ural University Publishing House, Yekaterinburg. 2021. P. 102.
  23. Kang K., Kwon S., Lee C., Hong D., Lee H.M. Hierarchical analysis of alloying element effects on gas nitriding rate of Fe alloys: A DFT, microkinetic and kMC study // Acta Mater. 2019. V. 174. P. 174–180.
  24. Dolgov N., Rutkovskyi A. Structural Steel Microhardness Improvement by Ion Nitriding // Strength Mater. 2022. V. 54. P. 819–824.
  25. Berrached I., Rabahi L., Gallouze M., Kellou A. Nitriding effect on structural stability and magnetic properties of FeAl alloys: DFT study // J. Magn. Magn. Mater. 2018. V. 480. P. 79–86.
  26. Gao W., Zhang Z., Zhao S., Wang Y., Chen H., Lin X. Effect of small addition of Ti on the Fe-based coating by laser cladding // Surf. Coat. Technol. 2016. V. 291. P. 423–429.
  27. Song M., Guo J., Yang Y., Geng K., Xiang M., Zhu Q., Zhao H. Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L // Appl. Surf. Sci. 2019. V. 504. P. 144483.
  28. Zhu Z.Y., Liu Y.L., Gou G.Q., Gao W., Chen J. Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser + CMT // Sci. Rep. 2021. V. 11. P. 10020.
  29. Chu Q., Tong X., Xu S., Zhang M., Li J., Yan F.X., Yan C. Interfacial investigation of explosion-welded Titanium/steel bimetallic plates // J. Mater. Eng. Perform. 2020. V. 29. P. 78–86.
  30. Vardanyan E.L., Budilov V.V. Technology of the deposition of composite coatings based on Ti–Al intermetallic compounds by vacuum-arc plasma discharge // J. Surf. Investig. 2016. V. 10. P. 728–731.
  31. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // J. Phys. Rev. B. 1996. V. 54. P. 11169.
  32. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. P. 3865–3868. https://materialsproject.org/materials/mp-305#thermodynamic_stability (Accessed on 7 July 2023).
  33. Dudarev S.L., Ma P.-W. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals // Phys. Rev. Mater. 2018. V. 2. P. 033602.
  34. Gaillac R., Pullumbi P., Coudert F.-X. ELATE: an open-source online application for analysis and visualization of elastic tensors // J. Phys.: Condens. Matter. 2016. V. 28. P. 275201.
  35. Maintz S., Deringer V.L., Tchougreeff A.L., Dronskowski R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT // J. Comput. Chem. 2016. V. 37. P. 1030–1035.
  36. Mao Y., Yang H., Sheng Y., Wang J., Ouyang R., Ye C., Zhang W. Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information // ACS Omega 2021. V. 6. No. 22. P. 14533–14541.
  37. Ray R., Giessen B.C., Grant N. The constitution of metastable titanium-rich Ti-Fe alloys: An order-disorder transition // J. Metall. Trans. 1972. V. 3. P. 627–629.
  38. Zhu L.F., Friak M., Udyansky A., Ma D., Schlieter A., Kuehn U., Eckert J., Neugebauer J. Ab initio basedstudy of finite-temperature structural, elastic and thermodynamic properties of FeTi // Intermetallics. 2014. V. 45. P. 11–17.
  39. Oka H., Tanno T., Yano Y., Ohtsuka S., Kaito T., Hashimoto N. Effect of nitrogen concentration on creep strength and microstructure of 9Cr-ODS ferritic/martensitic steel // J. Nucl. Mater. 2022. V. 572. P. 154032.
  40. Gonzales-Ormeño P.G., Schön C.G. Electron theoretical investigation of the stability of the B2-TiFe compound // J. Alloys Compd. 2009. V. 470. P. 301–305.
  41. Momeni K., Ji Y., Wang Y., Paul S., Neshani S., Yilmaz D.E., Chen L.-Q. Multiscale computational understanding and growth of 2D materials: a review // NPJ Comput. Mater. 2020. V. 6. No. 1. P. 22.
  42. Aghajani H., Motlagh M.S. Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium // J. Mater. Sci.: Mater. Med. 2017. V. 28. P. 29.
  43. Dai B., Ma Y., Yu F., Yuan M., Chu J., Xu Y. Research on promoting the formation and clusters of TiN phase in high purity cast iron // Metallurgy. 2023. V. 62. No. 1. P. 53–56.
  44. Born M. On the stability of crystal lattices // Math. Proc. Camb. Phil. Soc. 1940. V. 36. P. 160–172.
  45. Mouhat F., Coudert F.X. Necessary and sufficient elastic stability conditions in various crystal systems // Phys. Rev. B. 2014. V. 90. P. 224104.
  46. Buchenau U., Schober H.R., Welter J.-M., Arnold G., Wagner R. Lattice dynamics of Fe0.5Ti0.5 // Phys. Rev. B. 1983. V. 27. P. 955–962.
  47. Voigt W. Lehrbuch der kristallphysik. Germany: Vieweg + Teubner Verlag, 1928.
  48. Reuss A. Calculation of the Flow Limits of Mixed Crystals on the Basis of the Plasticity of Monocrystals // ZAMM. 1929. V. 9. P. 49–58.
  49. DeWit R. elastic constants and thermal expansion averages of a non textured polycrystals // J. Mech. Mater. Struct. 2008. V. 3. No. 2. P. 195–212.
  50. Hill R. The Elastic Behaviour of a Crystalline Aggregate // Proc. Phys. Soc. A. 1952. V. 65. P. 349–354.
  51. Pugh S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals // The London, Edinburgh, and Dublin Phil. Mag. J. Sci. 1954. V. 45. P. 823–843.
  52. Frantsevich I.N., Voronov F.F., Bokuta S.A. Elastic constants and elastic moduli of metals and insulators handbook. Kiev: Naukova Dumka, 1983. P. 60–180.
  53. Ranganathan S.I., Ostoja-Starzewski M. Universal Elastic Anisotropy Index // Phys. Rev. Lett. 2008. V. 101. P. 055504.
  54. Benyelloul K., Bouhadda Y., Bououdina M., Faraoun H.I., Aourag H., Seddik L. The effect of hydrogen on the mechanical properties of FeTi for hydrogen storage applications // Int. J. Hydrog. Energy. 2014. V. 39. No. 2. P. 12667–12675.
  55. Ravindran P., Fast L., Korzhavyi P.A., Johansson B., Wills J., Eriksson O. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 // J. Appl. Phys. 1998. V. 84. No. 9. P. 4891–4904.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».