Reduced Kinetic Models for Methane Flame Simulations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present paper describes the development of two reduced kinetic schemes suitable for multidimensional turbulent flame simulations in high-temperature oxidation of methane. Formal reduction of the USC Mech II C1-C4 detailed kinetic model by using the directed relations graph mechanism results in a 31-species derivative scheme for lean to near-stoichiometric conditions. To deduce a still shorter, simpler, and less stiff kinetic model, further species elimination is based on combined sensitivity and chemical time scale information to arrive at a 22-species scheme. The kinetic rates of lumped reactions are here expressed as simple Arrhenius rates, avoiding nonlinear algebraic combinations of excluded elementary steps or species. The accuracy is maintained by tuning pre-exponential constants in the global Arrhenius rate expressions and computing a range of target data. A more compact, quasi-global 14-species scheme is subsequently formulated by modeling fuel decomposition to a methyl radical pool, followed by CH3 oxidation with O and OH toward CH2 and CO, and retaining a full CO/H2/O2 subset. The C2-chain with recombination of CH3 into C2H6 and production of C2H2 is also represented in both schemes. Equilibrium 0D and 1D propagating premixed flames and axisymmetric co-flowing lifted laminar jet flames are computed through an iterative validation process. Accompanying computations with the USC Mech II mechanism, as well as available experimental results, are exploited for optimization. The comparisons demonstrate that the derived schemes ensure satisfactory agreement with data over the investigated parameter space.

作者简介

I. Lytras

Laboratory of Applied Thermodynamics, Department of Mechanical Engineering and Aeronautics

Email: koutmos@mech.upatras.gr
希腊, Patras, 26504

P. Koutmos

Laboratory of Applied Thermodynamics, Department of Mechanical Engineering and Aeronautics

编辑信件的主要联系方式.
Email: koutmos@mech.upatras.gr
希腊, Patras, 26504

E. Dogkas

Laboratory of Applied Thermodynamics, Department of Mechanical Engineering and Aeronautics

Email: koutmos@mech.upatras.gr
希腊, Patras, 26504

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019