The ontogeny of the locomotor wave in sevruga fish (Acipenser stellatus Pall.)


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Continuous filming of the swimming movements of sevruga prelarvae (Acipenser stellatus Pall.) was performed over the first to the fifteenth post-hatching days. These data were used to determine three locomotor characteristics: {f(v, θ), A(v, θ), w(v, θ)} where f is the frequency of the transverse oscillations; A is the amplitude of the tail fin movements; w is the speed of the locomotor wave; v is the speed of the locomotion; and θ is the number of days during which the filming was carried out. In addition, the comparison of two characteristics was performed. These are the step length L(v, θ) and the wavelength λ(v, θ), where LvT is the distance that a fish covers in time T ≡ 1/f and λ is λ ≡ wT. The results led to the conclusion that the prelarva swimming movements achieve the carangiform mode by the end of the second week. This is characteristic of adults and coincides with the beginning of external feeding. The mode is represented by an equation that follows from the generalized Bainbridge’s law: f = f0 + f1v/H. The equation includes one anatomical parameter H of total length and two kinematic parameters f0 and f1, which can be calculated by the linear approximation method. These are the kinematic parameters that are changed in the early ontogenesis when 1 ≤ θ ≤ 15. However, the parameters become stable when θ ≥ 15. This means that the parameter values are constant and similar to those of adult fish. The similar properties of stabilization and variability have the kinematic parameters of other locomotor characteristics.

Sobre autores

V. Smolyaninov

Blagonravov Institute of Machine Science; Institute of Theoretical and Experimental Biophysics

Autor responsável pela correspondência
Email: smolian@mail.ru
Rússia, Moscow, 101990; Pushchino, Moscow Region, 142290

D. Gulyaev

Koltzov Institute of Developmental Biology

Email: smolian@mail.ru
Rússia, Moscow, 119334

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2017