Spatial Adaptation of Populations in Ecological Models


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A discrete dynamic model of populations is described; in this model, spatial migration is specified by a finite-state Markov chain, while growth and nonlinear interactions are defined by convex and concave functions. This makes it possible to efficiently analyze the dynamic process and the behavior of a system based on the theory of monotone operators. The adaptation mechanisms that underlie the evolution of a population migration matrix are studied. It turned out that the final state depends on the choice of the initial state, although the positive eigenvectors (Perron vectors) of all these matrices are almost identical. The components of a Perron vector here correspond to the relative residence time of a population in a certain location. Spatial adaptation indicates the optimization of the residence time of a population in certain regions of its distribution range. The corresponding computations allowed a new interpretation of the phenomenon of spatial coadaptation as an “attraction” (in the case of predation) or a “repulsion” (in the case of competition) of the Perron vectors of populations.

Авторлар туралы

V. Il’ichev

Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vitaly369@yandex.ru
Ресей, Rostov-on-Don, 344006

O. Il’icheva

Don State Technical University

Email: vitaly369@yandex.ru
Ресей, Rostov-on-Don, 344022

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2018