On the “swelling” of mitochondria under palmitic acid, calcium, and hypotension treatment
- Авторы: Kurdukov D.N.1, Vekshin N.L.1
-
Учреждения:
- Institute of Cell Biophysics, Russian Academy of Sciences
- Выпуск: Том 61, № 4 (2016)
- Страницы: 622-628
- Раздел: Cell Biophysics
- URL: https://ogarev-online.ru/0006-3509/article/view/152056
- DOI: https://doi.org/10.1134/S000635091604014X
- ID: 152056
Цитировать
Аннотация
The high-amplitude swelling of mitochondria is critically considered. In contrast to numerous statements by some authors about a marked swelling of isolated liver mitochondria under the influence of palmitic acid, calcium ions, or hypotension, we have shown that mitochondria are generally not subject to highamplitude swelling. According to optical-microscopy data even during long-lasting incubation (in distilled water) where full hypotension takes place, the size of liver mitochondria (approximately 1 µm) can be enlarged by no more than by 40%. Under short-lasting hypotension or the addition of palmitic acid the mitochondrial diameter becomes greater by only 20% or remains virtually unchanged. The light scattering of the mitochondrial suspension measured using a photometer according to the decrease in optical density declines by 2.5 times. A decrease in the light scattering in hypotension or via the addition of palmitic acid or calcium (in an isotonic medium) occurs because of damage (even destruction) to the outer membrane, rather than due to the swelling of mitochondria, as was previously believed. The inner membrane is not significantly expanded. The destruction of the outer membrane reduces the probability of light scattering by each mitochondrion at the boundary layer of the water/membrane interface. Release of substances from the matrix resulting in a decrease of its refractive index may additionally contribute to the decrease in light scattering. Palmitic acid and calcium (at concentrations of 10 to 100 µM) cause permeabilization and disruption of the outer membrane gradually, over several minutes. Full hypotension activates this process very rapidly, viz., within a fraction of a second. Under low ionic-strength conditions, the addition of calcium leads to neutralization of negative charges on the membrane surface, which induces aggregation of mitochondria, thus enhancing light scattering and creating the illusion of mitochondrial swelling.
Ключевые слова
Об авторах
D. Kurdukov
Institute of Cell Biophysics, Russian Academy of Sciences
Email: nvekshin@rambler.ru
Россия, Pushchino, Moscow oblast, 142290
N. Vekshin
Institute of Cell Biophysics, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: nvekshin@rambler.ru
Россия, Pushchino, Moscow oblast, 142290
Дополнительные файлы
