Bispectral Analysis of Electroencephalogram Using Neural Networks to Assess the Depth of Anesthesia


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article reviews algorithms of bispectral analysis of the electroencephalogram (EEG) signal of a patient to determine the level of brain activity during sedative-assisted treatment. The proposed algorithms are based on construction of multiple convolutions of complex amplitudes of the EEG signal, combined into so-called bispectra. Artificial neural networks (ANNs) are used to perform bispectral analysis and form a conclusion on the degree of patient brain activity. The article also shows individual results of functioning of the algorithms on real EEG signals and compares these results with expert judgments of doctors (anesthesiologists and neurophysiologists).

作者简介

N. Lavrov

Triton Electronics LLC; Krasovsky Institute of Mathematics and Mechanics; Ural Federal University

编辑信件的主要联系方式.
Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg; Ekaterinburg; Ekaterinburg

V. Bulaev

Triton Electronics LLC

Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg

E. Solouhin

Triton Electronics LLC

Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg

S. Taratuhin

Triton Electronics LLC

Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg

A. Chistyakov

Triton Electronics LLC

Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016