Bispectral Analysis of Electroencephalogram Using Neural Networks to Assess the Depth of Anesthesia
- 作者: Lavrov N.G.1,2,3, Bulaev V.V.1, Solouhin E.N.1, Taratuhin S.A.1, Chistyakov A.V.1
-
隶属关系:
- Triton Electronics LLC
- Krasovsky Institute of Mathematics and Mechanics
- Ural Federal University
- 期: 卷 49, 编号 6 (2016)
- 页面: 380-384
- 栏目: Article
- URL: https://ogarev-online.ru/0006-3398/article/view/234297
- DOI: https://doi.org/10.1007/s10527-016-9571-9
- ID: 234297
如何引用文章
详细
The article reviews algorithms of bispectral analysis of the electroencephalogram (EEG) signal of a patient to determine the level of brain activity during sedative-assisted treatment. The proposed algorithms are based on construction of multiple convolutions of complex amplitudes of the EEG signal, combined into so-called bispectra. Artificial neural networks (ANNs) are used to perform bispectral analysis and form a conclusion on the degree of patient brain activity. The article also shows individual results of functioning of the algorithms on real EEG signals and compares these results with expert judgments of doctors (anesthesiologists and neurophysiologists).
作者简介
N. Lavrov
Triton Electronics LLC; Krasovsky Institute of Mathematics and Mechanics; Ural Federal University
编辑信件的主要联系方式.
Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg; Ekaterinburg; Ekaterinburg
V. Bulaev
Triton Electronics LLC
Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg
E. Solouhin
Triton Electronics LLC
Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg
S. Taratuhin
Triton Electronics LLC
Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg
A. Chistyakov
Triton Electronics LLC
Email: lavrov_ng@mail.ru
俄罗斯联邦, Ekaterinburg
补充文件
