Computational Study of Polyligand Complexes of Aspirin with Human Serum Albumin Using Docking and Molecular Dynamics Methods

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An important feature of biochemical reactions of molecules is the possibility of binding of several ligands to a biomolecular target. This effect should be taken into account in the analysis of protein–ligand interactions and in the estimates of drug distribution in the living systems. This work describes molecular simulations of successive parallel steps of binding of two aspirin (As) molecules at the known binding sites 1–3 of human serum albumin with differing affinity. The experimental data on multiple binding of aspirin to albumin is inconclusive. Docking of aspirin anion As– to albumin predicts that stability of the complexes at the binding sites changes as 1 > 3 > 2. Molecular dynamics simulations have further shown that the complexes at site 3 are unstable. The free energies of ligand binding ΔGb have been calculated using extended linear interaction energies method with additional contributions of the entropy of ligand binding. The results have shown that the most probable reaction path corresponds to binding of As– at site 1 with ΔGb1= ‒8.2 kcal·mol–1 and after that to site 2 with ΔGb2= ‒4.5 kcal·mol–1. The calculated values of ΔGb agree with the known experimental data. The stoichiometry of the albumin–As–complexes is 2. Negative cooperative effect is found for binding of two As– molecules with albumin. The used molecular model and computational approaches can be further employed in the studies of binding of different medicinal molecules that are transported by serum albumin.

作者简介

V. Luzhkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vbl@icp.ac.ru
Chernogolovka, Russia

参考

  1. Peters T. Jr. All about albumin: biochemistry, genetics, and medical applications (Academic Press, 1995).
  2. Ghuman J., Zunszain P. A., Petitpas I., Bhattacharya A. A., Otagiri M., and Curry S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 353, 38–52 (2005). doi: 10.1016/j.jmb.2005.07.075
  3. Curry S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab. Pharmacokinet., 24, 342–357 (2009).
  4. Yamasaki K., Chuang V. T. G., Maruyama T., and Otagiri M. Albumin–drug interaction and its clinical implication. Biochim. Biophys. Acta – General Subjects, 1830, 5435–5443 (2013). doi: 10.1016/j.bbagen.2013.05.005
  5. Zsila F. Subdomain IB is the third major drug binding region of human serum albumin: Toward the three-sites
  6. model. Mol. Pharmaceut., 10, 1668–1682 (2013). doi: 10.1021/mp400027q
  7. Czub M. P., Handing K. B., Venkataramany B. S., Cooper D. R., Shabalin I. G., and Minor W. Albumin-based transport of nonsteroidal anti-inflammatory drugs in mammalian blood plasma. J. Med. Chem., 63, 6847–6862 (2020). doi: 10.1021/acs.jmedchem.0c00225
  8. Spada A., Emami J., Tuszynski J. A., and Lavasanifar A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharmaceut., 18, 1862–1894 (2021). doi: 10.1021/acs.molpharmaceut.1c00046
  9. Ribeiro A. G., Alves J. E. F., Soares J. C. S., dos Santos K. L., Jacob I. T. T., da Silva Ferreira C. J., dos Santos J. C., de Azevedo R. D. S., Almeida S. M. V., and de Lima M. C. A. Albumin roles in developing anticancer compounds. Med. Chem. Res., 30, 1469–1495 (2021). doi: 10.1007/s00044-021-02748-z
  10. He X. M. and Carter D. C. Atomic structure and chemistry of human serum albumin. Nature, 358, 209–215
  11. (1992).
  12. Pokidova О. V., Luzhkov V. B., Emelyanova N. S., Krapivin V. B., Kotelnikov A. I., Sanina N. A., and Aldoshin S. M. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans., 49, 12674–12685 (2020). doi: 10.1039/d0dt02452j
  13. Durrant J. D. and McCammon J. A. Molecular dynamics simulations and drug discovery. DMC Biol., 9, 71 (2011). doi: 10.1186/1741-7007-9-71
  14. Лужков В. Б. Молекулярное моделирование и расчеты свободных энергий связывания белков и биологически активных соединений. Усп. химии, 86 (3), 211–230 (2017). doi: 10.1070/RCR4610
  15. York D. M. Modern alchemical free energy methods for drug discovery explained. ACS Phys. Chem. Au., 3, 478–491 (2023). doi: 10.1021/acsphyschemau.3c00033
  16. Bojko B., Sulkowska A., Maciazek M., Rownicka J., Njau F., and Sulkowski W. W. Changes of serum albumin affinity for aspirin induced by fatty acid. J. Biol. Macromol., 42, 314–323 (2008). doi: 10.1016/j.ijbiomac.2007.11.002
  17. Yang F., Bian C., Zhu L., Zhao G., Huang Z., and Huang M. Effect of human serum albumin on drug metabolism: Structural evidence of esterase activity of human serum albumin. J. Struct. Biol., 157, 348–355 (2007). doi: 10.1016/j.jsb.2006.08.015
  18. Brozell S. R., Mukherjee S., Balius T. E., Roe D. R., Case D. A., and Rizzo R. C. Evaluation of DOCK 6 as a pose generation and database enrichment tool. J. Comput. Aided Mol. Des., 26, 749–773 (2012). doi: 10.1007/s10822-012-9565-y
  19. Allen W. J., Balius T. E., Mukherjee S., Brozell S. R., Moustakas D. T., Lang P. T., Case D. A., Kuntz I. D., and Rizzo R. C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 36, 1132–1156 (2015). doi: 10.1002/jcc.23905
  20. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., and FerrinT. E. UCSF chimera – a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612 (2004). doi: 10.1002/jcc.20084
  21. Case D. A., Cheatham T., Darden T., Gohlke H., Luo R., Merz K. M. Jr., Onufriev A., Simmerling C., Wang B., and Woods R. The amber biomolecular simulation programs. J. Comput. Chem., 26, 1668–1688 (2005). doi: 10.1002/jcc.20290
  22. Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., and Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 11, 3696–3713 (2015). doi: 10.1021/acs.jctc.5b00255
  23. Marenich V., Cramer C. J., and Truhlar D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 113, 6378–6396 (2009). doi: 10.1021/jp810292n
  24. King G. and Warshel A. A surface constrained all-atom solvent model for effective simulations of polar solutions. J. Chem. Phys., 91, 3647–3661 (1989).
  25. Kaminski G. A., Friesner R. A., Tirado-Rives J., and Jorgensen W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 105, 6474–6487 (2001). doi: 10.1021/jp003919d
  26. Åqvist J., Medina C., and Samuelson J. E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng., 7, 385–391 (1994).
  27. Marelius J., Kolmodin K., Feierberg I., and Åqvist J. Q. A molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems. J. Mol. Graph. Modelling, 16, 213–225 (1998).
  28. Åqvist J., Luzhkov V., and Brandsdal B. Ligand binding affinities from MD simulations. Acc. Chem. Res., 35, 358–365 (2002). doi: 10.1021/ar010014p 2
  29. Almlöf M., Andér M., and Åqvist J. Energetics of codonanticodon recognition on the small ribosomal subunit. Biochemistry, 46, 200–209 (2007). doi: 10.1021/bi061713i
  30. Luzhkov V., Decroly E., Canard B., Selisko B., and Åqvist J. Evaluation of adamantane derivatives as inhibitors of dengue virus mRNA cap methyltransferase by docking and molecular dynamics simulations. Mol. Inf., 32, 155–164 (2013). doi: 10.1002/minf.201200107
  31. Stjernschantz E., Marelius J., Medina C., Jacobsson M., Vermeulen N. P. E., and Oostenbrink C. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method. J. Chem. Inf. Model., 46, 1972–1983 (2006). doi: 10.1021/ci0601214
  32. Singh N. and Warshel A. A comprehensive examination of the contributions to the binding entropy of protein–ligand complexes. Proteins, 78, 1724–1735 (2010). doi: 10.1002/prot.22689

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».