Regulation of Electron Transport in Chloroplasts: Induction Processes in Tradescantia Leaves
- Authors: Suslichenko I.S1, Trubitsin B.V1, Tikhonov A.N1
-
Affiliations:
- Department of Physics, Lomonosov Moscow State University
- Issue: Vol 70, No 2 (2025)
- Pages: 265-277
- Section: Cell biophysics
- URL: https://ogarev-online.ru/0006-3029/article/view/292978
- DOI: https://doi.org/10.31857/S0006302925020053
- EDN: https://elibrary.ru/LACSEK
- ID: 292978
Cite item
Abstract
About the authors
I. S Suslichenko
Department of Physics, Lomonosov Moscow State UniversityMoscow, Russia
B. V Trubitsin
Department of Physics, Lomonosov Moscow State UniversityMoscow, Russia
A. N Tikhonov
Department of Physics, Lomonosov Moscow State University
Email: an_tikhonov@mail.ru
Moscow, Russia
References
- Эдвардс Д. и Уокер Д., Фотосинтез С3- и С4-растений: механизмы и регуляция (Мир, М., 1986).
- Walker D. A. The Z-scheme – down hill all the way. Trends Plant Sci., 7 (4), 183–185 (2002). doi: 10.1016/S1360-1385(02)02242-2
- Ruban A. The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting (John Wiley & Sons Ltd., 2012). doi: 10.1002/9781118447628
- Joliot P., Beal D., and Joliot A. Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. Biochim. Biophys. Acta, 1656 (2–3), 166–176 (2004). doi: 10.1016/j.bbabio.2004.03.010
- Dumas L., Chazaux M., Peltier G., Johnson X., and Alric J. Cytochrome b6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow. Photosynth. Res., 129, 307–320 (2016). doi: 10.1007/s11120-016-0298-y
- Tikhonov A. N. The cytochrome b6 f complex: Biophysical aspects of its functioning in chloroplasts. In: Membrane protein complexes: structure and function, subcellular biochemistry, Ed. by J. R. Harris and E. J. Boekema (Springer, Singapore, 2018), vol. 87, pp. 287–328. doi: 10.1007/978-981-10-7757-9
- Munekage Y., Hashimoto M., Miyake C., Tomizawa K., Endo T., Tasaka M., and Shikanai T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429, 579–582 (2004). doi: 10.1038/nature02598
- Breyton C., Nandha B., Johnson G. N., Joliot P., and Finazzi G. Redox modulation of cyclic electron flow around photosystem I in C3 plants. Biochemistry, 45 (45), 13465–13475 (2006). doi: 10.1021/bi061439s
- Strand D. D., Fisher N., and Kramer D. M. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current Research and Future Trends, Ed. by H. Kirchhoff (Caister Acad. Press, Norfolk, UK, 2016), pp. 89–100. doi: 10.21775/9781910190470
- DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schunemann D., Finazzi G., Joliot P., Barbato R., and Leister D. A. Complex Containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell, 132 (2), 273–285 (2008). doi: 10.1016/j.cell.2007.12.028
- Puthiyaveetil S., Kirchhoff H., and Huhner R. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts: Current Research and Future Trends, Ed. by H. Kirchhoff (Caister Acad. Press, Norfolk, UK, 2016), pp. 59–87. doi: 10.21775/9781910190470
- Malone L. A., Proctor M. S., Hitchcock A., Hunter C. N., and Johnson M. P. Cytochrome b6 f – orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta, 1862 (5), 148380 (2021). doi: 10.1016/j.bbabio.2021.148380
- Sarewicz M., Pintscher S., Pietras R., Borek A., Bujnowicz Ł., Hanke G., Cramer W. A., Finazzi G., and Osyczka A. Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes. Chem. Rev., 121 (4), 2020–2108 (2021). doi: 10.1021/acs.chemrev.0c00712
- Устынюк Л. Ю. и Тихонов А. Н. Окисление пластохинола −лимитирующая стадия в цепи переноса электронов в хлоропластах. Биохимия, 87 (10), 1372–1387 (2022). doi: 10.31857/S0320972522100049
- Tikhonov A. N. The cytochrome b6 f complex: Plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynth. Res., 159, 203–227 (2024). doi: 10.1007/s11120-023-01034-w
- Тихонов А. Н. Электронный транспорт в хлоропластах: регуляция и альтернативные пути переноса электронов. Биохимия, 88 (10), 1742–1760 (2023). doi: 10.31857/S0320972523100032
- Asada K. The water-water cycle in chloroplasts. Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Molec. Biol., 50 (1), 601–639 (1999). doi: 10.1146/annurev.arplant.50.1.601
- Balazadeh S., Jaspert N., Arif M., Mueller-Roeber B., and Maurino V. G. Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. Front. Plant Sci., 3, 234 (2012). doi: 10.3389/fpls.2012.00234
- Kuvykin I. V., Vershubskii A. V., Ptushenko V. V., & Tikhonov A. N. Oxygen as an alternative electron acceptor in the photosynthetic electron transport chain of C3 plants. Biochemistry (Moscow), 73 (10), 1063–1075 (2008). doi: 10.1134/S0006297908100027
- Demmig-Adams B., Cohu C. M., Muller O., and Adams W. W. 3rd. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth. Res., 113 (1–3), 75–88 (2012). doi: 10.1007/s11120-012-9761-6
- Horton P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3455–3465 (2012). doi: 10.1098/rstb.2012.0069
- Rochaix J.-D. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta - Bioenergetics, 1807 (3), 375–383 (2011). doi: 10.1016/j.bbabio.2010.11.010
- Bellafiore S., Barneche F., Peltier G., and Rochaix J.-D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature, 433 (7028), 892–895 (2005). doi: 10.1038/nature03286
- Li X.-P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., and Niyogi K. K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH Sensing by the PsbS protein. J. Biol. Chem., 279 (22), 22866–22874 (2004). doi: 10.1074/jbc.M402461200
- Li Z., Wakao S., Fischer B. B., and Niyogi K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol., 60 (1), 239–260 (2009). doi: 10.1146/annurev.arplant.58.032806.103844
- Tikhonov A. N., Khomutov G. B., Ruuge E. K., and Blumenfeld L. A. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim. Biophys. Acta, 637 (2), 321–333 (1981). doi: 10.1016/0005-2728(81)90171-7
- Takizawa K., Cruz J. A., Kanazawa A., and Kramer D. M. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim. Biophys. Acta, 1767 (10), 1233–1244 (2007). doi: 10.1016/j.bbabio.2007.07.006
- Tikhonov A. N. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res., 116 (2–3), 511–534 (2013). doi: 10.1007/s11120-013-9845-y
- Fisher N., Bricker T. M., and Kramer D. M. Regulation of photosynthetic cyclic electron flow pathways by adenylate status in higher plant chloroplasts. Biochim. Biophys. Acta, 1860 (11), 148081 (2019). doi: 10.1016/j.bbabio.2019.148081
- Liu L., Chow W. S., and Anderson J. M. Light quality during growth of Tradescantia albiflora regulates photosystem stoichiometry, photosynthetic function and susceptibility to photoinhibition. Physiol. Plantarum, 89 (4), 854–860 (1993). doi: 10.1111/j.1399-3054.1993.tb05296.x
- Lichtenthaler H. K., Babani F., and Langsdorf G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth. Res., 93 (1–3), 235—244 (2007). doi: 10.1007/s11120-007-9174-0
- Lichtenthaler H. K., Ac A., Marek M. V., Kalina J., and Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem., 45 (8), 577–588 (2007). doi: 10.1016/j.plaphy.2007.04.006
- Matsubara S., Forster B., Waterman M., Robinson S. A., Pogson B. J., Gunning B., and Osmond B. From ecophysiology to phenomics: some implications of photoprotection and shade–sun acclimation in situ for dynamics of thylakoids in vitro. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3503–3514 (2012). doi: 10.1098/rstb.2012.0072
- Kaiser E., Morales A., Harbinson J., Kromdijk J., Heuvelink E., and Marcelis L. F. M. Dynamic photosynthesis in different environmental conditions. J. Exp. Botany, 66 (9), 2415–2426 (2015). doi: 10.1093/jxb/eru406
- Suslichenko I. S., and Tikhonov A. N. Photo‐reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett., 593 (8), 788–798 (2019). doi: 10.1002/1873-3468.13366
- Kasahara M., Kagawa T., Oikawa K., Suetsugu N., MiyaoM., and Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature, 420 (6917), 829–832 (2002). doi: 10.1038/nature01213
- Davis P. A., Caylor S., Whippo C. W., and Hangarter R. P. Changes in leaf optical properties associated with light‐dependent chloroplast movements. Plant, Cell & Environment, 34 (12), 2047–2059 (2011). doi: 10.1111/j.1365-3040.2011.02402.x
- Tikkanen M., Grieco M., Nurmi M., Rantala M., Suorsa M., and Aro E.-M. Regulation of the photosynthetic apparatus under fluctuating growth light. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3486–3493 (2012). doi: 10.1098/rstb.2012.0067
- Kono M., and Terashima I. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B: Biology, 137, 89–99 (2014). doi: 10.1016/j.jphotobiol.2014.02.016
- Barber J., Ford R. C., Mitchell R. A. C., and Millner P. A. Chloroplast thylakoid membrane fluidity and its sensitivity to temperature. Planta, 161 (4), 375–380 (1984). doi: 10.1007/BF00398729
- Лютова М.И., Тихонов А.Н. Сопоставление температурной зависимости подвижности липидо-растворимой спиновой метки в тилакоидных мембранах хлоропластов дыни и огурца. Биофизика, 33, 460–464 (1988).
- Tikhonov A. N., and Vershubskii A. V. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res., 146 (1–3), 299–329 (2020). doi: 10.1007/s11120-020-00777-0
- Benkov M. A., Yatsenko A. M., and Tikhonov A. N. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. Photosynth. Res., 139 (1–3), 203–214 (2019). doi: 10.1007/s11120-018-0535-7
- Сусличенко И.С., Беньков М.А., Ковалишина Д.А., Петрова М.О., Трубицин Б.В. и Тихонов А.Н. Электронный транспорт в мембранах хлоропластов теневыносливого и светолюбивого видов традесканции. Биол. мембраны, 40 (2), 92–104 (2023). doi: 10.31857/S023347552302007X
- Kalmatskaya O. A., Karavaev V. A., and Tikhonov A. N. Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light. Photosynth. Res., 142 (3), 265–282 (2019). doi: 10.1007/s11120-019-00663-4
- Беньков М. А., Сусличенко И. С., Трубицин Б. В. и Тихонов А. Н. Влияние акклимации растений на электронный транспорта в мембранах хлоропластов Cucumis sativus и Cucumis melo. Биол. мембраны, 40 (3), 172–187 (2023). doi: 10.31857/S0233475523030039
- Караваев В. А. и Кукушкин А. К. Исследование состояния электронно-транспортной цепи в листьях высших растений методом быстрой индукции флуоресценции. Биофизика, 21 (5), 862-866 (1976).
- Lazar D. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1412 (1), 1–28 (1999). doi: 10.1016/S0005-2728(99)00047-X
- Stirbet A., and Govindjee. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. Photosynth. Res., 130 (1–3), 193–213 (2016). doi: 10.1007/s11120-016-0243-0
- Рууге Э. К. и Тихонов А. Н. Электронный парамагнитный резонанс: исследование механизмов регуляции световых стадий фотосинтеза растений. Биофизика, 67 (3), 516–523 (2022). doi: 10.31857/S0006302922030097
- Suslichenko I. S., Trubitsin B. V., Vershubskii A. V., and Tikhonov A. N. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus rosasinensis and Tradescantia leaves. Plant Physiol. Biochem., 185, 233–243 (2022). doi: 10.1016/j.plaphy.2022.06.002
- Klughammer C. and Schreiber U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth. Res., 128, 195–214 (2016). doi: 10.1007/s11120-016-0219-0
- Ptushenko V. V., Zhigalova T. V., Avercheva O. V., and Tikhonov A. N. Three phases of energy-dependent induction of P700 + and Chl a fluorescence in Tradescantia fluminensis leaves. Photosynth. Res., 139 (1–3), 509–522 (2019). doi: 10.1007/s11120-018-0494-z
- Mishanin V. I., Trubitsin B. V., Benkov M. A., Minin A. A., and Tikhonov A. N. Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth. Res., 130 (1–3), 275–291 (2016). doi: 10.1007/s11120-016-0252-z
- Mishanin V. I., Trubitsin B. V., Patsaeva S. V., Ptushenko V. V., Solovchenko A. E., and Tikhonov A. N. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth. Res., 133 (1–3), 87–102 (2017). doi: 10.1007/s11120-017-0339-1
- Kalmatskaya O. A., Trubitsin B. V., Suslichenko I. S., Karavaev V. A., and Tikhonov A. N. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. Photosynth. Res., 146 (1–3), 123–141 (2020). doi: 10.1007/s11120-020-00767-2
- Ptushenko V. V., Ptushenko O. S., Samoilova O. P., and Solovchenko A. E. An exceptional irradiance-induced decrease of light trapping in two Tradescantia species: an unexpected relationship with the leaf architecture and zeaxanthinmediated photoprotection. Biol. Plantarum, 60 (2), 385–393 (2016). doi: 10.1007/s10535-016-0593-7
- Kanervo E., Suorsa M., and Aro E.-M. Functional flexibility and acclimation of the thylakoid membrane. Photochem. Photobiol. Sci., 4 (12), 1072–1080 (2005). doi: 10.1039/b507866k
- Flannery S. E., Hepworth C., Wood W. H. J., Pastorelli F., Hunter C. N., Dickman M. J., Jackson P. J., and Johnson M. P. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J., 105 (1), 223–244 (2021). doi: 10.1111/tpj.15053
- Yamori W. and Shikanai T. Physiological functions of cyclic electron transport around Photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant Biol., 67 (1), 81–106 (2016). doi: 10.1146/annurev-arplant-043015-112002
- Walters R. G. and Horton P. Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta, 195 (2), 248–256 (1994). doi: 10.1007/BF00199685
- Gray G. R., Savitch L. V., Ivanov A. G., and Huner N. P. A. Photosystem II excitation pressure and development of resistance to Photoinhibition (II. Adjustment of photosynthetic capacity in winter wheat and winter rye). Plant Physiol., 110 (1), 61–71 (1996). doi: 10.1104/pp.110.1.61
Supplementary files
