Processes of Thermal Aggregation and Autolysis of Cysteine Protease Molecules – Bromelain, Ficin, and Papain
- Authors: Holyavka M.G1,2, Koroleva V.A1,3, Artyukhov V.G1
-
Affiliations:
- Voronezh State University
- Sevastopol State University
- Voronezh State Medical University named after N.N. Burdenko
- Issue: Vol 70, No 2 (2025)
- Pages: 225-239
- Section: Molecular biophysics
- URL: https://ogarev-online.ru/0006-3029/article/view/292975
- DOI: https://doi.org/10.31857/S0006302925020027
- EDN: https://elibrary.ru/LAHVSP
- ID: 292975
Cite item
Abstract
Keywords
About the authors
M. G Holyavka
Voronezh State University; Sevastopol State University
Email: holyavka@rambler.ru
Voronezh, Russia; Sevastopol, Russia
V. A Koroleva
Voronezh State University; Voronezh State Medical University named after N.N. BurdenkoVoronezh, Russia; Voronezh, Russia
V. G Artyukhov
Voronezh State UniversityVoronezh, Russia
References
- Bilal M., Qamar S. A., Carballares D., Berenguer-Murcia A., and Fernandez-Lafuente R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol. Adv., 70, 108304 (2024). doi: 10.1016/j.biotechadv.2023.108304
- Mamo J. and Assefa F. The role of microbial aspartic protease enzyme in food and beverage industries. J. Food Qual., 2018, 1–15 (2018). doi: 10.1155/2018/7957269
- Morellon-Sterling R., El-Siar H., Tavano O. L., Berenguer-Murcia A., and Fernandez-Lafuente R. Ficin: a protease extract with relevance in biotechnology and biocatalysis. Int. J. Biol. Macromol., 162, 394–404 (2020). doi: 10.1016/j.ijbiomac.2020.06.144
- Tavano O. L., Berenguer-Murcia A., Secundo F., and Fernandez-Lafuente R. Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf., 17 (2), 412–436 (2018). doi: 10.1111/1541-4337.12326
- Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A., and Ashraf M. Microbial proteases applications. Front. Bioeng. Biotechnol., 7, 110 (2019). doi: 10.3389/fbioe.2019.00110
- Manjuprasanna V. N., Rudresha G. V., Urs A. P., Milan Gowda M. D., Rajaiah R., and Vishwanath B. S. Drupin, a cysteine protease from Ficus drupacea latex accelerates excision wound healing in mice. Int. J. Biol. Macromol., 165, 691–700 (2020). doi: 10.1016/j.ijbiomac.2020.09.215
- Castaneda-Valbuena D., Berenguer-Murcia A., Fernandez-Lafuente R., Morellon-Sterling R., and Tacias-Pascacio V. G. Biological activities of peptides obtained by pepsin hydrolysis of fishery products. Process Biochem., 120, 53–63 (2022). doi: 10.1016/j.procbio.2022.05.029
- Gorguc A., Gencdağ E., and Yılmaz F. M. Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments – a review. Food Res. Int., 136, 109504 (2020). doi: 10.1016/j.foodres.2020.109504
- Karami Z. and Akbari-Adergani B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol., 56, 535–547 (2019). doi: 10.1007/s13197-018-3549-4
- Nwachukwu I. D. and Aluko R. E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem., 43 (1), e12761 (2019). doi: 10.1111/jfbc.12761
- Tacias-Pascacio V. G., Morellon-Sterling R., Castaneda-Valbuena D., Berenguer-Murcia, A., Kamli M. R., Tavano O., and Fernandez-Lafuente R. Immobilization of papain: a review. Int. J. Biol. Macromol., 188, 94–113 (2021). doi: 10.1016/j.ijbiomac.2021.08.016
- Balbinott N. and Margis R. Review: Unraveling the origin of the structural and functional diversity of plant cystatins. Plant Sci., 321, 111342, (2022). doi: 10.1016/j.plantsci.2022.111342
- Singleton A. and Buttle D. J. Ficain. In: Handbook of Proteolytic Enzymes (3rd ed.), Ed. by N. D. Rawlings and G. Salvesen (Acad. Press, 2013), pp. 1877–1879.
- Baidamshina D. R., Trizna E. Y., Holyavka M. G., Bogachev M. I., Artyukhov V. G., Akhatova F. S., Rozhina E. V., Fakhrullin R. F., and Kayumov A. R. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci. Rep., 7 (1), 46068 (2017). doi: 10.1038/srep46068
- Baidamshina D. R., Trizna E. Yu., Goncharova S. S., Sorokin A. V., Lavlinskaya M. S., Melnik A. P., Gafarova L. F., Kharitonova M. A., Ostolopovskaya O. V., Artyukhov V. G., Sokolova E. A., Holyavka M. G., Bogachev M. I., Kayumov A. R., and Zelenikhin P. V. The effect of ficin immobilized on carboxymethyl chitosan on biofilms of oral pathogens. Int. J. Mol. Sci., 24, 16090 (2023). doi: 10.3390/ijms242216090
- Koroleva V. A., Trizna E. Y., Pankova S. M., Agafonova M. N., Chirkova M. N., Vasileva O. S., Akhmetov N.,Shubina V. V., Porfiryev A. G., Semenova E. V., Sachenkov O. A., Bogachev M. I., Artyukhov V. G., Baltina T. V., Holyavka M. G., and Kayumov A. R. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int. J. Biol. Macromol., 164, 4205–4217 (2020). doi: 10.1016/j.ijbiomac.2020.09.030
- Rosenberg L., Krieger Y., Bogdanov-Berezovski A., Silberstein E., Shoham Y., and Singer A. J. A novel rapid and selective enzymatic debridement agent for burn wound management: A multi-center RCT. Burns, 40 (3), 466–474 (2014). doi: 10.1016/j.burns.2013.08.013
- Sharaf A. and Muthayya P. Microbial profile of burn wounds managed with enzymatic debridement using bromelainbased agent, NexoBridR. Burns, 48, 1618–1625 (2021). doi: 10.1016/j.burns.2021.12.004
- Abbas S., Shanbhag T., and Kothare A. Applications of bromelain from pineapple waste towards acne. Saudi J. Biol. Sci., 28, 1001–1009 (2020). doi: 10.1016/j.sjbs.2020.11.032
- Holyavka M. G., Goncharova S. S., Sorokin A. V., Lavlinskaya M. S., Redko Yu. A., Faizullin D. A., Baidamshina D. R., Zuev Y. F., Kondratyev M. S., Kayumov A. R., and Artyukhov V. G. Novel biocatalysts based on bromelain immobilized on functionalized chitosans and research on their structural features. Polymers, 14, 5110 (2022). doi: 10.3390/polym14235110
- Morse C. R., Wang H., Donahue D. M., Garrity J. M. and Allan J. S. Use of proteolytic enzymes in the treatment of proteinaceous esophageal food impaction. J. Emergency Med., 50, 183–186 (2016). doi: 10.1016/j.jemermed.2015.07.018
- Dietrich R. E. Oral proteolytic enzymes in the treatment of athletic injuries: a double-blind study. Pennsyl. Med. J., 68, 35–37 (1965).
- Veraldi S., Barbareschi M., Guanziroli E., Bettoli V., Minghetti S., Capitanio B., Sinagra J. L., Sedona P., and Schianchi R. Treatment of mild to moderate acne with a fixed combination of hydroxypinacolone retinoate, retinol glycospheres and papain glycospheres. G. Ital. Dermatol. Venereol., 150, 143–147 (2015).
- Bussadori S. K., de Godoy C. H. L., Alfaya T. A., Fernandes K. P. S., Mesquita-Ferrari R. A., and Motta L. J. Chemo-mechanical caries removal with Papacarie™: case series with 84 reports and 12 months of follow-up. J. Contemp. Dent. Pract., 15, 250–253 (2014). doi: 10.5005/jp-journals-10024-1523
- Juntavee J., Peerapattana A., Ratanathongkam N., Nualkaew N., Chatchiwiwattana S., and Treesuwan P. The antibacterial effects of apacaries gel on Streptococcus mutans: An in vitro study. Int. J. Clin. Pediatr. Dent., 7, 77–81 (2014). doi: 10.5005/jp-journals-10005-1241
- Venkataraghavan K., Kush A., Lakshminarayana C. S., Diwakar L., Ravikumar P., Patil S., and Karthik S. Chemomechanical caries removal: A review & study of an indigenously developed agent (Carie Care (TM) Gel) in children. J. Int. Oral Health, 5, 84–90 (2013).
- Baidamshina D. R., Koroleva V. A., Olshannikova S. S., Trizna E. Yu., Bogachev M. I., Artyukhov V. G., Holyavka M. G., and Kayumov A. R. Biochemical properties and anti-biofilm activity of chitosan-immobilized papain. Marine Drugs, 19, 197 (2021). doi: 10.3390/md19040197
- Cstorer A. and Menard R. Catalytic mechanism in papain family of cysteine peptidases. Proteolytic Enzymes: Serine and Cysteine Peptidases. Methods Enzymol., 244, 486–500 (1994). doi: 10.1016/0076-6879(94)44035-2
- Koroleva V., Lavlinskaya M., Holyavka M., Penkov N., Zuev Y., and Artyukhov V. Thermal inactivation, denaturation and aggregation processes of papain-like proteases. Chemistry & biodiversity, e202401038 (2024). doi: 10.1002/cbdv.202401038
- Bekhit A. A., Hopkins D. L., Geesink G., Bekhit A. A., and Franks P. Exogenous proteases for meat tenderization. Crit. Rev. Food Sci. Nutr., 54, 1012–1031 (2014). doi: 10.1080/10408398.2011.623247
- Ashie I. N. A., Sorensen T. L., and Nielsen P. M. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J. Food Sci., 67 (6), 2138–2142 (2002). doi: 10.1111/j.1365-2621.2002.tb09516.x
- Kaur S., Vasiljevic T., and Huppertz T. Milk protein hydrolysis by actinidin – kinetic and thermodynamic characterization and comparison to bromelain and papain. Food, 12 (23), 4248 (2023). doi: 10.3390/foods12234248
- Ratanji K. D., Derrick J. P., Dearman R. J., and Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J. Immunotoxicol., 11 (2), 99–109 (2014). doi: 10.3109/1547691X.2013.821564
- Arvinte T., Palais C., Green-Trexler E., Gregory S., Mach H., Narasimhan C., and Shameem M. Aggregation of biopharmaceuticals in human plasma and human serum: implications for drug research and development. mAbs., 5 (3), 491–500 (2013). doi: 10.4161/mabs.24245
- Ausserwoger H., Schneider M. M., Herling T. W., Arosio P., Invernizzi G., Knowles T. P. J., and Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat. Rev. Chem., 6 (12), 844–861 (2022). doi: 10.1038/s41570-022-00438-x
- Wang X., Das T. K., Singh S. K., and Kumar S. Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. mAbs., 1 (3), 254–267 (2009). doi: 10.4161/mabs.1.3.8035
- Tiller K. E., Li L., Kumar S., Julian M. C., Garde S., and Tessier P. M. Arginine mutations in antibody complementaritydetermining regions display context-dependent affinity/specificity trade-offs. J. Biol. Chem., 292 (40), 16638–16652 (2017). doi: 10.1074/jbc.M117.783837
- Kelly R. L., Le D., Zhao J., and Wittrup K. D. Reduction of nonspecificity motifs in synthetic antibody libraries. J. Mol. Biol., 430 (1), 119–130 (2018). doi: 10.1016/j.jmb.2017.11.008
- Birtalan S., Zhang Y., Fellouse F. A., Shao L., Schaefer G., and Sidhu S. S. The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J. Mol. Biol., 377 (5), 1518–1528 (2008). doi: 10.1016/j.jmb.2008.01.093
- Rupakheti C. R., Roux B., Dehez F., and Chipot C. Modeling induction phenomena in amino acid cation–π interactions. Theor. Chem. Acc., 137, 174 (2018). doi: 10.1007/s00214-018-2376-z
- Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., and Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science, 229 (4716), 834–838 (1985).
- Rosace A., Bennett A., Oeller M., Mortensen M. M., Sakhnini L., Lorenzen N., Poulsen C., and Sormanni P. Automated optimisation of solubility and conformational stability of antibodies and proteins. Nat. Commun., 14, 1937 (2023). doi: 10.1038/s41467-023-37668-6
- Mant C. T., Kovacs J. M., Kim H. M., Pollock D. D., and Hodges R. S. Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversedphase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers, 92 (6), 573–595 (2009). doi: 10.1002/bip.21316
- Hebditch M., Carballo-Amador M. A., Charonis S., Curtis R., and Warwicker J. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics, 33 (19), 3098–3100 (2017). doi: 10.1093/bioinformatics/btx345
- Kharat S. J. Density, viscosity and ultrasonic velocity studies of aqueous solutions of sodium acetate at different temperatures. J. Mol. Liquids, 140 (1–3), 10–14 (2008). doi: 10.1016/j.molliq.2007.12.006
- Bisht M., Jha I., and Venkatesu P. Comprehensive Evaluation of Biomolecular Interactions between Protein and Amino Acid Based-Ionic Liquids: A Comparable Study between [Bmim][Br] and [Bmim][Gly] Ionic Liquids. ChemistrySelect, 1 (13), 3510–3519 (2016). doi: 10.1002/slct.201600524
- Baker E. N., Boland M. J., Calder P. C., and Hardman M. J. The specificity of actinidin and its relationship to the structure of the enzyme. Biochim. Biophys. Acta, 616, 30–34 (1980). doi: 10.1016/0005-2744(80)90260-0
- Haesaerts S., Rodriguez Buitrago J. A., Loris R., Baeyens-Volant D., and Azarkan M. Crystallization and preliminary X-ray analysis of four cysteine proteases from Ficus carica latex. Acta Crystallogr. Sect. F Struct. Biol. Commun., 71, 459–465 (2015). doi: 10.1107/S2053230X15005014
- Сакибаев Ф. А., Холявка М. Г. и Артюхов В. Г. Особенности пространственных структур молекул растительных протеаз −бромелина, фицина и папаина. Вестн. ВГУ. Серия «Химия. Биология. Фармация», 3, 57–62 (2020).
- Pankova S. M., Sakibaev F. A., Holyavka M. G., and Artyukhov V. G. A possible role of charged amino-acid clusters on the surface of cysteine proteases for preserving activity when binding with polymers. Biophysics, 67 (1), 8–14 (2022). doi: 10.1134/S0006350922010146
Supplementary files
