ПРИМЕНЕНИЕ МЕТОДА 3VmrMLM ДЛЯ ПОИСКА НОВЫХ ГЕНОМНЫХ ВАРИАНТОВ, АССОЦИИРОВАННЫХ С ХАРАКТЕРИСТИКАМИ ВОЛОКНА У ЛЬНА
- Авторы: Дук М.А1, Канапин А.А1, Банкин М.П1, Самсонова М.Г1
-
Учреждения:
- Санкт-Петербургский политехнический университет Петра Великого
- Выпуск: Том 70, № 1 (2025)
- Страницы: 150-160
- Раздел: Биофизика cложныx cиcтем
- URL: https://ogarev-online.ru/0006-3029/article/view/285394
- DOI: https://doi.org/10.31857/S0006302925010181
- EDN: https://elibrary.ru/LUHBPB
- ID: 285394
Цитировать
Аннотация
Ключевые слова
Об авторах
М. А Дук
Санкт-Петербургский политехнический университет Петра Великого
Email: duk@mail.ioffe.ru
Санкт-Петербург, Россия
А. А Канапин
Санкт-Петербургский политехнический университет Петра ВеликогоСанкт-Петербург, Россия
М. П Банкин
Санкт-Петербургский политехнический университет Петра ВеликогоСанкт-Петербург, Россия
М. Г Самсонова
Санкт-Петербургский политехнический университет Петра ВеликогоСанкт-Петербург, Россия
Список литературы
- Goudenhooft C., Bourmaud A., and Baley C. Flax (Linum usitatissimum L.) fibers for composite reinforcement: exploring the link between plant growth, cell walls development, and fiber properties. Front. Plant Sci., 10, 411 (2019). doi: 10.3389/fpls.2019.00411
- Fogorasi M. and Barbu I. The potential of natural fibres for automotive sector – review. IOP Conf. Ser. Mater. Sci. Eng., 252, 012044 (2017). doi: 10.1088/1757-899X/252/1/012044
- Goudenhooft C., Bourmaud A., and Baley C. Varietal selection of flax over time: Evolution of plant architecture related to influence on the mechanical properties of fibers. Ind. Crop. Prod., 97, 56–64 (2017).
- Rozhmina T., Bankin M., Samsonova A., Kanapin A., and Samsonova M. A comprehensive dataset of flax (Linum uitatissimum L.) phenotypes. Data Brief, 37, 107224 (2021). doi: 10.1016/j.dib.2021.107224
- Kanapin A., Rozhmina T., Bankin M., Surkova S., Duk M., Osyagina E., and Samsonova M. Genetic determinants of fiber-associated traits in flax identified by omics data integration. Int. J. Mol. Sci., 23, 14536 (2022). doi: 10.3390/ijms232314536
- Li M., Zhang Y. W., Xiang Y., Liu M. H., and Zhang Y. M. IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol Plant., 15 (8), 1251–1253 (2022). doi: 10.1016/j.molp.2022.06.002, PMID: 35684963
- You F. and Cloutier S. Mapping quantitative trait loci onto chromosome-scale pseudomolecules in flax. Methods Protoc., 3 (2), 28 (2020). doi: 10.3390/mps3020028
- Yan Y., Ham B. K., Chong Y. H., Yeh S. D., and
- Lucas W. J. A plant SMALL RNA-BINDING PROTEIN 1 family mediates cell-to-cell trafficking of RNAi Signals. Mol. Plant., 13 (2), 321–335 (2020). doi: 10.1016/j.molp.2019.12.001
- Mei Y., Gao H. B., Yuan M., and Xue H. W. The Arabidopsis ARCP protein, CSI1, which is required for microtubule stability, is necessary for root and anther development. Plant Cell, 24 (3), 1066–1080 (2012). doi: 10.1105/tpc.111.095059
- Gu Y., Kaplinsky N., Bringmann M., Cobb A., Carroll A., Sampathkumar A., Baskin T. I., Persson S., and Somerville C. R. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA, 107 (29), 12866–12871 (2010). doi: 10.1073/pnas.1007092107
- Landrein B., Lathe R., Bringmann M., Vouillot C., Ivakov A., Boudaoud A., Persson S., and Hamant O. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis. Curr. Biol., 23 (10), 895–900 (2013). doi: 10.1016/j.cub.2013.04.013
- Werner A. K., Romeis T., and Witte C. P. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nature Chem. Biol., 6 (1), 19–21 (2010). doi: 10.1038/nchembio.265
- Shin I., Percudani R., and Rhee S. Structural and functional insights into (S)-ureidoglycine aminohydrolase, key enzyme of purine catabolism in Arabidopsis thaliana. J. Biol. Chem., 287 (22), 18796–18805 (2012). doi: 10.1074/jbc.M111.331819
- Serventi F., Ramazzina I., Lamberto I., Puggioni V., Gatti R., and Percudani R. Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria. ACS Chem. Biol., 5 (2), 203–214 (2010). doi: 10.1021/cb900248n, PMID: 20038185
- Bencivenga S., Simonini S., Benková E., and Colombo L. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell, 24 (7), 2886–2897 (2012). doi: 10.1105/tpc.112.100164
- Li G., Zhang J., Li J., Yang Z., Huang H., and Xu L. Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis. Plant J., 72 (2), 261–270 (2012). doi: 10.1111/j.1365-313X.2012.05074.x
- Gámez-Arjona F. M., Li J., Raynaud S., Baroja-Fernández E., Muñoz F. J., Ovecka M., Ragel P., Bahaji A., Pozueta-Romero J., and Mérida Á. Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol. J., 9 (9), 1049–1060 (2011). doi: 10.1111/j.1467-7652.2011.00626.x
- Seung D., Soyk S., Coiro M., Maier B. A., Eicke S., and Zeeman S. C. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol., 13 (2), e1002080 (2015). doi: 10.1371/journal.pbio.1002080
- Smith S. M., Fulton D. C., Chia T., Thorneycroft D., Chapple A., Dunstan H., Hylton C., Zeeman S. C., and Smith A. M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis. Plant Physiol., 136 (1), 2687–2699 (2004). doi: 10.1104/pp.104.044347
- Layat E., Cotterell S., Vaillant I., Yukawa Y., Tutois S., and Tourmente S. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. Plant J., 71 (1), 35–44 (2012). doi: 10.1111/j.1365-313X.2012.04948.x
- Barrero R. A., Umeda M., Yamamura S., and Uchimiya H. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division. Plant Cell, 14 (1), 149–163 (2002). doi: 10.1105/tpc.010301
- Hou B., Lim E. K., Higgins G. S., and Bowles D. J. N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem., 279 (46), 47822–47832 (2004). doi: 10.1074/jbc.M409569200
- Thomann A., Lechner E., Hansen M., Dumbliauskas E., Parmentier Y., Kieber J., Scheres B., and Genschik P. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet., 5 (1), e1000328 (2009). doi: 10.1371/journal.pgen.1000328
- Groß F., Rudolf E. E., Thiele B., Durner J., and Astier J. Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. J. Exp. Bot., 68 (9), 2149–2162 (2017). doi: 10.1093/jxb/erx105
- Lolle S., Greeff C., Petersen K., Roux M., Jensen M. K., Bressendorff S., Rodriguez E., Sømark K., Mundy J., and Petersen M. Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles. Cell Host Microbe, 21 (4), 518–529 (2017). doi: 10.1016/j.chom.2017.03.005
- Li H. and Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25 (14), 1754–1760 (2009). doi: 10.1093/bioinformatics/btp324
- Tello D., Gil J., Loaiza C. D., Riascos J. J., Cardozo N., and Duitama J. NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics, 35 (22), 4716–4723 (2019). doi: 10.1093/bioinformatics/btz275
- Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y., and Buckler E. S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23 (19), 2633–2635 (2007). doi: 10.1093/bioinformatics/btm308
- Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., de Bakker P. I., Daly M. J., and Sham P. C. PLINK: A tool set for wholegenome association and population-based linkage analyses. Am. J. Hum. Genet., 81 (3), 559–575 (2007). doi: 10.1086/519795
Дополнительные файлы
