Markov Network Model for Predicting Thousand Seed Weight in Chickpea Genotypes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Predicting yield-related traits such as thousand seed weight (TSW) allows researchers to develop varieties that achieve maximum efficiency and value under changing climate conditions. In this paper, we propose a Markov network model for predicting the important phenotypic trait TSW in chickpea genotypes using pre-selected single nucleotide polymorphisms and weather data for 5 days before and 20 days after sowing, such as minimum and maximum temperatures, precipitation, humidity, infrared radiation, and daylength. The constructed model predicts the TSW trait with high accuracy – the Pearson correlation coefficient is 0.83.

About the authors

D. D Maltsov

Peter the Great St.-Petersburg Polytechnic University

St.-Petersburg, Russia

M. G Samsonova

Peter the Great St.-Petersburg Polytechnic University

St.-Petersburg, Russia

K. N Kozlov

Peter the Great St.-Petersburg Polytechnic University

Email: kozlov_kn@spbstu.ru
St.-Petersburg, Russia

References

  1. Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., Cannon S., Baek J., Rosen B. D., Tar'an B., Millan T., Zhang X., Ramsay L. D., Iwata A., Wang Y., Nelson W., Farmer A. D., Gaur P. M., Soderlund C., Penmetsa R. V., Xu C., Bharti A. K., He W., Winter P., Zhao S., Hane J. K., Carrasquilla-Garcia N., Condie J. A., Upadhyaya H. D., Luo M. C., Thudi M., Gowda C. L., Singh N. P., Lichtenzveig J., Gali K. K., Rubio J., Nadarajan N., Dolezel J., Bansal K. C., Xu X., Edwards D., Zhang G., Kahl G., Gil J., Singh K. B., Datta S. K., Jackson S. A., Wang J., and Cook D. R. Draft genome sequence of chickpea (Cicer Arietinum) provides a resource for trait improvement. Nature Biotechnol., 31 (3), 240–246 (2013). doi: 10.1038/nbt.2491
  2. Smithson, J. B., Thompson J. A., and Summerfield R. J. Chickpea (Cicer Arietinum L.). In: Grain Legume Crops, Ed. by R. J. Summerfield and R. E. Roberts (Collins, Lond., UK, 1985), pp. 312–390.
  3. Shahal A., Berger J., and Turner N. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Function. Plant Biol., 30 (10), 1081–1087 (2003). doi: 10.1071/FP03084
  4. Kumar J. and Abbo S. Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments. Adv. Agron., 72, 107–138 (2001). doi: 10.12691/wjar-4-1-1
  5. Roberts E. H., Hadley P., and Summerfield R. J. Effects of temperature and photoperiod on flowering in chickpeas (Cicer Arietinum L.). Ann. Botany, 55 (6), 881–892 (1985).
  6. Soltani A., Hammer G. L., Torabi B., Robertson M. J., and Zeinali E. Modeling chickpea growth and development: Phenological development. Field Crops Res., 99 (1), 1– 13 (2006). doi: 10.1016/j.fcr.2006.02.004
  7. Soltani A., Robertson M. J., Mohammad-Nejad Y., and Rahemi-Karizaki A. Modeling chickpea growth and development: Leaf production and senescence. Field Crops Research, 99 (1), 14–23 (2006).
  8. Jones J. W., Antle J. M., Basso B., Boote K. J., Conant R. T., Foster I., Godfray H. C. J., Herrero M., Howitt R. E., Janssen S., Keating B. A., MunozCarpena R., Porter Ch. H., Rosenzweig C., and Wheeler T. R. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricult. Systems, 155, 269–288 (2017). doi: 10.1016/j.agsy.2016.09.021
  9. Jones J. W., Antle J. M., Basso B., Boote K. J., Conant R. T., Foster I., Charles H., Godfray J., Herrero M., Howitt R. E., Janssen S., Keating B. A., Munoz-Carpena R., Porter Ch. H., Rosenzweig C., and Wheeler T. R. Brief history of agricultural systems modeling. Agricult. Systems, 155, 240–254 (2016). doi: 10.1016/j.agsy.2016.05.014
  10. Jones J. W, Hoogenboom G., Porter C. H., Boote K. J., Batchelor W. D., Hunt L. A., Wilkens P. W., Singh U., Gijsman A. J., and Ritchie J. T. The DSSAT cropping system model. Eur. J. Agronomy, 18 (3–4), 235–265 (2003). doi: 10.1016/S1161-0301(02)00107-7
  11. Boote K. J., Jones J. W., and Pickering N. B. Potential uses and limitations of crop models. Agron. J., 88, 704–716 (1996). doi: 10.2134/Agronj1996.00021962008800050005X
  12. Boote K. J., Jones J. W., White J. W., Asseng S., and Lizaso J. I. Putting mechanisms into crop production models: Putting mechanisms into crop production models. Plant, Cell Environ., 36 (9), 1658–72 (2013). doi: 10.1111/pce.12119
  13. Keating B., Carberry P. S., Hammer G., Probert M. E., Robertson M. J., Holzworth D., Huth N. I., Hargreaves J. N. G., Meinke H., Hochman Z., McLean G., Verburg K., Snow V., Dimes J. P., Silburn M., Wang E., Brown S., Bristow K. L., Asseng S., Chapman S., and Smith C. J. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agronomy, 18 (3–4), 267–288 (2003). doi: 10.1016/S1161-0301(02)00108-9
  14. Battisti R., Sentelhas P. C., and Boote K. J. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil. Int. J. Biometeorol., 62 (5), 823–832 (2018). doi: 10.1007/s00484-017-1483-1
  15. Williams J. R., Jones C. A., Kiniry J. R., and Spanel D. A. The EPIC crop growth model. Trans. ASAE, 32 (2), 497–511 (1989).
  16. Lal M., Singh K. K., Srinivasan G., Rathore L. S., Naidu D., and Tripathi C. N. Growth and yield responses of soybean in Madhya Pradesh, India to climate variability and change. Agricult. Forest Meteorol., 93 (1), 53–70 (1999). doi: 10.1016/s0168-1923(98)00105-1
  17. Chung U., Kim Y. U., Seo B. S., and Seo M. C. Evaluation of variation and uncertainty in the potential yield of soybeans in South Korea using multi-model ensemble climate change scenarios. Agrotechnology, 6 (2), 1000158 (2017). doi: 10.4172/2168-9881.1000158
  18. Mohammed A., Tana T., Singh P., Molla A., and Seid A. Identifying best crop management practices for chickpea (Cicer Arietinum L.) in Northeastern Ethiopia under climate change condition. Agricultural Water Management, 194, 68–77 (2017). doi: 10.1016/j.agwat.2017.08.022
  19. Patil D. and Patel H. R. Calibration and validation of CROPGRO (DSSAT 4.6) model for chickpea under Middle Gujarat agroclimatic region. Int. J. Agricult. Sci., 9 (27), 4342–4344 (2017).
  20. Mengesha U. L. Modeling the impacts of climate change on chickpea production in Adaa Woreda (East Showa Zone) in the semi-arid Central Rift Valley of Ethiopia. J. Pet. Environ. Biotechnol., 7, 288 (2016). doi: 10.4172/2157-7463.1000288
  21. Ageev A., Aydogan A., Bishopvon Wettberg E., Nuzhdin S. V., Samsonova M., and Kozlov K. Simulation model for time to flowering with climatic and genetic inputs for wild chickpea. Agronomy, 11, 1389 (2021). doi: 10.3390/agronomy11071389
  22. Hintze A., Edlund J. A., Olson R. S., Knoester D. B., Schossau J., Albantakis L., Tehrani-Saleh A., Kvam P., Sheneman L., Goldsby H., Bohm C., and Adami Ch. Markov brains: A technical introduction. arXiv, 1709.05601 (2017). doi: 10.48550/arXiv.1709.05601
  23. Olson R. S., Knoester D. B., and Adami Ch. Evolution of swarming behavior is shaped by how predators attack. Artificial Life, 22 (3), 299–318 (2016). doi: 10.1162/ARTL_a_00206
  24. Gad A. F. PyGAD: An intuitive genetic algorithm python library. Multimedia Tools and Applications, 83, 58029–58042 (2023). doi: 10.1007/s11042-023-17167-y
  25. Sokolkova A., Bulyntsev S. V., Chang P. L., CarrasquillaGarcia N., Igolkina A. A., Noujdina N. V., von Wettberg E.; Vishnyakova M. A., Cook D. R., Nuzhdin S. V., and Samsonova M. G. Genomic analysis of Vavilov’s historic chickpea landraces reveals footprints of environmental and human selection. Int. J. Mol. Sci., 21 (11), 3952 (2020). doi: 10.3390/ijms21113952
  26. Chen T. and Guestrin C. XGBoost: A scalable tree boosting system. In: Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (ACM, San Francisco, USA, 2016), pp. 785–794. doi: 10.1145/2939672.2939785
  27. Vadez V., Soltani A., and Sinclair T. R. Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Res., 146, 1–9 (2013). doi: 10.1016/j.fcr.2013.03.005
  28. von Wettberg E. J. B., Chang P. L., Başdemir F., Carrasquila-Garcia N., Korbu L. B., Moenga S. M., Bedada G., Greenlon A., Moriuchi K. S., Singh V., Cordeiro M. A., Noujdina N. V., Dinegde K. N., Shah Sani S. G. A., Getahun T., Vance L., Bergmann E., Lindsay D., Mamo B. E., Warschefsky E. J., Dacosta-Calheiros E., Marques E., Yilmaz M. A., Cakmak A., Rose J., Migneault A., Krieg Ch. P., Saylak S., Temel H., Friesen M. L., Siler E., Akhmetov Zh., Ozcelik H., Kholova J., Can C., Gaur P., Yildirim M., Sharma H., Vadez V., Tesfaye K., Woldemedhin A. F., Tar’an B., Aydogan A., Bukun B., Penmetsa R. V., Berger J., Kahraman A., Nuzhdin S. V., and Cook D. R. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Commun., 9 (1), (2018). doi: 10.1038/s41467-018-02867-z
  29. Vadez V., Berger J. D., Warkentin T., Asseng S., Ratnakumar P., Chandra Rao K. P., Gaur P. M., MunierJolain N., Larmure A., Voisin A.-S., Sharma H. C., Pande S., Sharma M., Krishnamurthy L., and Zaman A. M. Adapta-tion of grain legumes to climate change: A review.Agron. Sustain. Dev., 32 (1), 31–44 (2012). doi: 10.1007/s13593-011-0020-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).