Entropy-robust randomized forecasting under small sets of retrospective data


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper suggests a new randomized forecasting method based on entropy-robust estimation for the probability density functions (PDFs) of random parameters in dynamic models described by the systems of linear ordinary differential equations. The structure of the PDFs of the parameters and measurement noises with the maximal entropy is studied. We generate the sequence of random vectors with the entropy-optimal PDFs using a modification of the Ulam–von Neumann method. The developed method of randomized forecasting is applied to the world population forecasting problem.

Sobre autores

Yu. Popkov

Institute for Systems Analysis; Moscow Institute of Physics and Technology (National Research University); Higher School of Economics (National Research University)

Autor responsável pela correspondência
Email: popkov@isa.ru
Rússia, Moscow; Moscow; Moscow

Yu. Dubnov

Institute for Systems Analysis; Moscow Institute of Physics and Technology (National Research University)

Email: popkov@isa.ru
Rússia, Moscow; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016