3D NUMERICAL MODEL FOR STUDYING ELECTRON PRECIPITATION IN THE UPPER ATMOSPHERES OF VENUS-LIKE EXOPLANETS

Cover Page

Cite item

Full Text

Abstract

The paper presents a three-dimensional numerical model of solar wind plasma flow around a terrestrial planet that does not have its own magnetic field. The model is based on the approximation of multicomponent magnetohydrodynamics and takes into account ionization and recombination processes. The numerical model is validated using the example of the magnetosphere of Venus. Our model, in particular, allows us to calculate the structure and parameters of electron precipitation into the planet’s ionosphere. The developed model is supposed to be used to study observational manifestations of the potential biomarker NO in the atmospheres of exoplanets without their own magnetic field.

About the authors

A. G Zhilkin

Institute of Astronomy of the Russian Academy of Sciences

Email: zhilkin@inasan.ru
Moscow, Russia

V. I Shematovich

Institute of Astronomy of the Russian Academy of Sciences

Moscow, Russia

G. N Tsurikov

Institute of Astronomy of the Russian Academy of Sciences

Moscow, Russia

D. V Bisikalo

Institute of Astronomy of the Russian Academy of Sciences; National center of physics and mathematics

Moscow, Russia; Sarov, Russia

References

  1. O.L. Vaisberg, J.G. Luhmann, and C.T. Russell, J. Geophys. Res. 95, 14841 (1990).
  2. C.T. Russell, J.G. Luhmann, and R.J. Strangeway, Planet. Space Sci. 54(13-14), 1482 (2006).
  3. A.F. Nagy, D. Winterhalter, K. Sauer, T.E. Cravens, et al., Space Sci. Rev. 111(1), 33 (2004).
  4. T.E. Moore and J.L. Horwitz, Rev. Geophys. 45(3), id. RG3002 (2007).
  5. R. Ramstad and S. Barabash, Space Sci. Rev. 217(2), id. 36 (2021).
  6. В.И. Шематович, И.Ф. Шайхисламов, А.Г. Жилкин, И.С. Саванов, Г.Н. Цуриков, Д.В. Бисикало, ФИЗМАТ 1, 33 (2023).
  7. Y. Futaana, G. Stenberg Wieser, S. Barabash, and J.G. Luhmann, Space Sci. Rev. 212(3-4), 1453 (2017).
  8. T.L. Zhang, M. Delva, W. Baumjohann, H.-U. Auster, et al., Nature 450(7170), 654 (2007).
  9. C. Martinecz, A. Boesswetter, M. Fränz, E. Roussos, et al., J. Geophys. Res. Planet 114(E9), id. E00B30 (2009).
  10. J.R. Spreiter and S.S. Stahara, J. Geophys. Res. 85, 7715 (1980).
  11. J.E. McGary and D.H. Pontius, J. Geophys. Res. 99(A2), 2289 (1994).
  12. S. Cable and R.S. Steinolfson, J. Geophys. Res. 100(A11), 21645 (1995).
  13. T. Tanaka and K. Murawski, J. Geophys. Res. 102(A9), 19805 (1997).
  14. T. Tanaka, Adv. Space Res. 26(10), 1577 (2000).
  15. E. Kallio, J.G. Luhmann, and J.G. Lyon, J. Geophys. Res. 103(A3), 4723 (1998).
  16. R. Bauske, A.F. Nagy, T.I. Gombosi, D.L. De Zeeuw, K.G. Powell, and J.G. Luhmann, J. Geophys. Res. 103(A10), 23625 (1998).
  17. N. Terada, H. Shinagawa, T. Tanaka, K. Murawski, and K. Terada, J. Geophys. Res. Space Physics 114(A9), id. A09208 (2009).
  18. Y.J. Ma, A.F. Nagy, C.T. Russell, R.J. Strangeway, H.Y. Wei, and G. Toth, J. Geophys. Res. Space Physics 118(1), 321 (2013).
  19. N. Terada, S. Machida, and H. Shinagawa, J. Geophys. Res. Space Physics 107(A12), id. 1471 (2002).
  20. N. Terada, H. Shinagawa, and S. Machida, Adv. Space Res. 33(2), 161 (2004).
  21. E. Kallio, R. Jarvinen, and P. Janhunen, Planet. Space Sci. 54(13-14), 1472 (2006).
  22. E. Kallio, T.L. Zhang, S. Barabash, R. Jarvinen, et al., Planet. Space Sci. 56(6), 796 (2008).
  23. A.P. Matthews, J. Comput. Phys. 112(1), 102 (1994).
  24. A.G. Zhilkin, D.V. Bisikalo, and V.I. Shematovich, Astron. Rep. 66(3), 245 (2022).
  25. D.V. Bisikalo, V.I. Shematovich, and B. Hubert, Universe 8(8), id. 437 (2022).
  26. V.I. Shematovich, D.V. Bisikalo, and G.N. Tsurikov, Atmosphere 14(7), id. 1092 (2023).
  27. V.I. Shematovich, D.V. Bisikalo, G.N. Tsurikov, and A.G. Zhilkin, Astron. Rep. 68 (2024), in print.
  28. G.N. Tsurikov and D.V. Bisikalo, Astron. Rep. 67(2), 125 (2023).
  29. G.N. Tsurikov and D.V. Bisikalo, Astron. Rep. 67(11), 1123 (2023).
  30. H. Lammer, L. Sproß, J.L. Grenfell, M. Scherf, L.Fossati, M. Lendl, and P.E. Cubillos, Astrobiology 19(7), 927 (2019).
  31. L. Sproß, M. Scherf, V.I. Shematovich, D.V. Bisikalo, and H. Lammer, Astron. Rep. 65(4) 275 (2021).
  32. V.S. Meadows and R.K. Barnes, in Handbook of Exoplanets, edited by H.J. Deeg and J.A. Belmonte (Springer Intern. Publ. AG, part of Springer Nature, 2018), id. 57.
  33. S.-S. Huang, Publ. Astron. Soc. Pacific 71(422), 421 (1959).
  34. J.F. Kasting, D.P. Whitmire, and R.T. Reynolds, Icarus 101(1), 108 (1993).
  35. A.A. Boyarchuk, B.M. Shustov, I.S. Savanov, M.E. Sachkov, et al., Astron. Rep. 60(1), 1 (2016).
  36. B.M. Shustov, M.E. Sachkov, S.G. Sichevsky, R.N. Arkhangelsky, et al., Solar System Res. 55(7), 677 (2021).
  37. C.A. Barth, D.N. Baker, K.D. Mankoff, and S.M. Bailey, Geophys. Res. Letters 28(8), 1463 (2001).
  38. C.A. Barth, K.D. Mankoff, S.M. Bailey, and S.C. Solomon, J. Geophys. Res. Space Physics 108(A1), id. 1027 (2003).
  39. J.C. Gerard and C.A. Barth, J. Geophys. Res. 82(4), 674 (1977).
  40. C.A. Barth, Planet. Space Sci. 40(2-3), 315 (1992).
  41. P.C. Cosby, J. Chemical Physics 98(12), 9544 (1993).
  42. C.W. Walter, P.C. Cosby, and H. Helm, J. Chemical Physics 99(5), 3553 (1993).
  43. V.I. Shematovich, D.V. Bisikalo, and J.C. Gérard, Geophys. Res. Letters 18(9), 1691 (1991).
  44. J.C. Gérard, V.I. Shematovich, and D.V. Bisikalo, Geophys. Res. Letters 18(9), 1695 (1991).
  45. V.I. Shematovich, D.V. Bisikalo, and J.C. Gérard, Ann. Geophysicae 10(10), 792 (1992).
  46. J.C. Gérard, V.I. Shematovich, and D.V. Bisikalo, The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, edited by R.M. Johnson and T.L. Killeen (Washington, D.C., AGU); Geophys. Monograph Ser. 87, 235 (1995).
  47. J.C. Gérard, D.V. Bisikalo, V.I. Shematovich, and J.W. Duff, J. Geophys. Res. 102(A1), 285 (1997).
  48. C.A. Barth, S.M. Bailey, and S.C. Solomon, Geophys. Res. Letters 26(9), 1251 (1999).
  49. A.G. Zhilkin and D.V. Bisikalo, Universe 7(11), id. 422 (2021).
  50. J.G. Luhmann, Space Science Reviews 44(3-4), 241 (1986).
  51. J.-Y. Chaufray, J.-L. Bertaux, E. Quémerais, E. Villard, and F. Leblanc, Icarus 217(2), 767 (2012).
  52. J.-Y. Chaufray, J.-L. Bertaux, E. Quémerais, F. Leblanc, and S. Sulis, Icarus 262, 1 (2015).
  53. Б.Н. Гершман, Динамика ионосферной плазмы (М.: Наука, 1974).
  54. R.W. Schunk and A.F. Nagy, Ionospheres: physics, plasma physics, and chemistry (Cambridge Univ. Press, 2009).
  55. A. Garcia Muñoz, Planet. Space Sci. 55(10), 1426 (2007).
  56. А.Г. Жилкин, Ю.Г. Гладышева, В.И. Шематович, Д.В. Бисикало, Астрон. журн. 100(12), 1190 (2023).
  57. Л.Д. Ландау, Е.М. Лифшиц, Электродинамика сплошных сред (М.: Физматлит, 2003).
  58. E.J. Weber and L.Davis, Jr., Astrophys. J. 148, 217 (1967).
  59. A.G. Zhilkin, Astron. Rep. 67(4), 307 (2023).
  60. Д.В. Бисикало, А.Г. Жилкин, А.А. Боярчук, Газодинамика тесных двойных звезд (М.: Физматлит, 2013).
  61. А.Г. Жилкин, А.В. Соболев, Д.В. Бисикало, М.М. Габдеев, Астрон. журн. 96(9), 748 (2019).
  62. I. Whittaker, G. Guymer, M. Grande, B. Pinter, et al., J. Geophys. Res. 115(A9), id.A09224 (2010).
  63. С.А. Романов, В.Н. Смирнов, О.Л. Вайсберг, Космич. исслед. 16(5), 746 (1978).
  64. J.A. Slavin, R.E. Holzer, J.R. Spreiter, and S.S. Stahara, J. Geophys. Res. 89(A5), 2708 (1984).
  65. C.T. Russell, E. Chou, J.G. Luhmann, P. Gazis, L.H. Brace, and W.R. Hoegy, J. Geophys. Res. 93(A6), 5461 (1988).
  66. N.M. Schneider, J.I. Deighan, S.K. Jain, A. Stiepen, et al., Science 350(6261), id. 0313 (2015).
  67. J.-C. Gérard, L. Soret, V.I. Shematovich, D.V. Bisikalo, and S.W. Bougher, Icarus 288, 284 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 The Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).