Симметричная устойчивость вертикальных бароклинных вихрей с теплым ядром

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сделана попытка связать морфологические характеристики интенсивных конвективных вихрей, таких как (водяные) смерчи и пыльные вихри, с их гидродинамической устойчивостью. Рассмотрена симметричная устойчивость циклострофически сбалансированных вертикальных бароклинных вихрей, радиус максимального ветра которых зависит от высоты. Показана устойчивость узких, близких к цилиндрическим в своей нижней части вихрей с радиусом, который затем с возрастающей скоростью увеличивается с высотой и становится бесконечным на конечном уровне над поверхностью Земли. Напротив, более широкие вихри конической формы удовлетворяют необходимому условию неустойчивости, и высказывается гипотеза о том, что это отчасти объясняет более диффузный, неорганизованный характер подобного рода пыльных вихрей. Рассмотрена возможность постановки задачи с учетом общего вращения.

Об авторах

М. В. Курганский

Институт физики атмосферы им. А.М. Обухова РАН

Автор, ответственный за переписку.
Email: kurgansk@ifaran.ru
Россия, 119017, Москва, Пыжевский пер., 3

Список литературы

  1. Арнольд В.И. Об условиях нелинейной устойчивости плоских стационарных криволинейных течений идеальной жидкости // ДАН СССР. 1965. Т. 162. № 5. С. 975–978.
  2. Вараксин А.Ю. Воздушные торнадоподобные вихри: математическое моделирование // ТВТ. 2017. Т. 55. № 2. С. 291–316.
  3. Ингель Л.Х. О динамике инерционных частиц в интенсивных атмосферных вихрях // Изв. РАН. Физика атмосферы и океана. 2021. Т. 57. № 6. С. 632–640.
  4. Калашник М.В., Свиркунов П.Н. О симметричной устойчивости состояний циклострофического и геострофического баланса в стратифицированной среде // ДАН. 1996 Т. 348. № 6. С. 811–813.
  5. Калашник М.В., Курганский М.В., Чхетиани О.Г. Бароклинная неустойчивость в геофизической гидродинамике // УФН. 2022. Т. 192. № 10. С. 1110–1144.
  6. Онищенко О.Г., Похотелов О.А., Астафьева Н.М., Хортон В., Федун В.Н. Структура и динамика концентрированных мезомасштабных вихрей в атмосферах планет // УФН. 2020. Т. 190. № 7. С. 732–748.
  7. Balme M., Greeley R. Dust devils on Earth and Mars // Rev. Geophys. 2006. V. 44. P. RG3003.
  8. Bluestein H.B., Weiss C.C., Pazmany A.L. Doppler radar observations of dust devils in Texas // Mon. Wea. Rev. 2004. V. 132. № 1. P. 209–224.
  9. Fenton L.K., Metzger S.M., Michaels T.I., Scheidt S.P., Dorn T.C., Neakrase L.D.V., Cole B., Sprau O. Meteorological and geological controls on dust devil activity: Initial results from a field study at Smith Creek Valley, Nevada, USA // Aeolian Research. 2022. V. 59. P. 100 831.
  10. Fiedler B.H. Conditions for laminar flow in geophysical vortices // J. Atmos. Sci. 1989. V. 46. P. 252–259.
  11. Hess G.D., Spillane K.T. Characteristics of dust devils in Australia // J. Appl. Meteorol. 1990. V. 29. P. 498–507.
  12. Ito J., Niino H. Particle image velocimetry of a dust devil observed in a desert // SOLA. 2014. V. 10. P. 108–111.
  13. Kahanpää H, Newman C., Moores J., Zorzano M.-P., Martín-Torres J., Navarro S., Lepinette A., Cantor B., Lemmon M. T., Valentín–Serrano P., Ullán A., Schmidt W. Convective vortices and dust devils at the MSL landing site: annual variability // J. Geophys. Res. Planets 2016. V. 121(8). P. 1514–1549.
  14. Kanak K.M., Lilly D.K., Snow J.T. The formation of vertical vortices in the convective boundary layer // Q. J. R. Meteorol. Soc. 2000. V. 126. P. 2789–2810.
  15. Kurgansky M.V. A simple model of dry convective helical vortices (with applications to the atmospheric dust devil) // Dyn. Atmos. Oceans. 2005. V. 40. P. 151–162.
  16. Kurgansky M.V. Steady-state properties and statistical distribution of atmospheric dust devils // Geophys. Res. Lett. 2006. V. 33. P. L19S06(1–4).
  17. Kurgansky M.V. Simple models of helical baroclinic vortices // Procedia IUTAM. 2013. V. 7. P. 193–202.
  18. Kurgansky M.V., Lorenz R.D., Renno N.O., Takemi T., Gu Z., Wei W. Dust devil steady-state structure from a fluid dynamics perspective // Space Sci. Rev. 2016. V. 203(1–4). P. 209–244.
  19. Kurgansky M.V., Montecinos A., Villagran V., Metzger S.M. Micrometeorological conditions for dust-devil occurrence in the Atacama Desert // Boundary-Layer Meteorol. 2011. V. 138. P. 285–298.
  20. Leverson V.H., Sinclair P.C., Golden J.H. Waterspout wind, temperature and pressure structure deduced from aircraft measurements // Mon. Wea. Rev. 1977. V. 105(6). P. 725–733.
  21. Ooyama K. On the stability of the baroclinic circular vortex: A sufficient condition for instability // J. Atmos. Sci. 1966. V. 23. № 1. P. 43–53.
  22. Rayleigh L. On the dynamics of revolving fluids // Proc. R. Soc. 1917. V. A 93. P. 148–154.
  23. Rennó N.O., Burkett M.L., Larkin M.P. A simple thermodynamical theory for dust devils // J. Atmos. Sci. 1998. V. 55. P. 3244–3252.
  24. Schwiesow R.L. Horizontal velocity structure in waterspouts // J. Appl. Meteor. 1981. V. 20. P. 349–360.
  25. Stull R.B. Meteorology for Scientists and Engineers. 3rd ed. Univ. of British Columbia, 2011. 938 pp.
  26. Vatistas G.H., Kozel V., Mih W.C. A simpler model for concentrated vortices // Exp. Fluids. 1991. V. 11. P. 73–76.

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».