FREQUENCY SPECTRA AND SURFACE WAVE HEIGHT DISTRIBUTIONS BASED ON THE MEASUREMENTS OF SAKHALIN ISLAND

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Spectral characteristics of long-term measurements of surface sea waves off the coast of Sakhalin Island by bottom pressure stations are analyzed. The shapes of frequency spectra in the wind wave range demonstrate great diversity and variability. The frequency of sea state conditions are determined in terms of the parameters of the frequency spectrum width and wave nonlinearity taking into account the change in the dimensionless parameter of depth at the measurement point. A significant decrease in the probability of high waves with increasing spectrum width, as well as with an increase in the ratio of the characteristic wave amplitude to depth or with an increase in the Ursell parameter is shown. The result is most clearly manifested when estimating the spectrum width through the Goda parameter.

About the authors

A. S Tregubov

HSE University; Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

A. V Kokorina

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: a.kokorina@ipfran.ru
Nizhny Novgorod, Russia

A. V Slunyaev

HSE University; Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

E. G Didenkulova

HSE University; Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

A. I Zaitsev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences; Special research bureau for automation of marine researches of the Far Eastern branch, Russian Academy of Sciences

Nizhny Novgorod, Russia; Yuzhno-Sakhalinsk, Russia

References

  1. Глуховский Б.Х. Исследование морского ветрового волнения. Л.: Гидрометеоиздат, 1966. 284 с.
  2. Кокорина А.В., Слюняев А.В., Зайцев А.И., Диденкулов А.Е., Москвишин А.А., Диденкулова Н.И., Пелиновский Е.Н. Анализ данных долговременных измерений волн у о-ва Сахалин // Экологические системы и приборы. 2022. Т. 12. С. 45–54.
  3. Кокорина А.В., Слюняев А.В., Зайцев А.И., Леоненков Р.В. Измерения направленных волн у о-ва Сахалин антенной донных станций // Изв. РАН. Физика атмосферы и океана. 2024. Т. 60. С. 644–659.
  4. Лопатухин Л.И. Ветровое волнение. СПб: BBM, 2012. 165 с.
  5. Слюняев А.В., Кокорина А.В., Зайцев А.И., Диденкулова Е.Г., Москвишин А.А., Диденкулов О.И., Пелиновский Е.Н. Зависимость вероятностных распределений высот волн от физических параметров по результатам измерений у о-ва Сахалин // Фундаментальная и прикладная гидрофизика. 2023a. Т. 16. № 3. С. 18–29.
  6. Слюняев А.В., Пелиновский Д.Е., Пелиновский Е.Н. Морские волны-убийцы: наблюдения, физика и математика // Успехи физических наук. 2023b. Т. 193. Вып. 2. С. 155–181.
  7. Cartwright D.E., Longuet-Higgins M.S. The statistical distribution of the maxima of a random function // Proc. R. Soc. London. 1956. V. 237. P. 212–232.
  8. Costa A., Osborne A.R., Resio D.T., Alessio S., Chrivi E., Saggese E., Bellomo K., Long C.E. Soliton turbulence in shallow water ocean surface waves // Phys. Rev. Lett. 2014. V. 113. 108501.
  9. Goda Y. Numerical experiments on wave statistics with spectral simulation // Rep. Port Harbour Res. Inst. 1970. V. 9. P. 3–57.
  10. Hasselmann K., Barnett T.P., Bouws E., Carlson H., Cartwright D.E., Enke K., Ewing J.A., Gienapp H., Hasselmann D.E., Kruseman P., Meerburg A., Muller P., Olbers D.J., Richter K., Sell W., Walden H. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Hamburg: Deutsches Hydrographisches Institut, 1973. (Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift A, Bd. 8, № 12)
  11. Janssen P.A. Nonlinear four-wave interactions and freak waves // J. Phys. Oceanogr. 2003. V. 33. P. 863–884.
  12. Kirezci C., Babanin A., Chaikov D. Probabilistic assessment of rogue wave occurrence in directional wave fields // Ocean Dyn. 2021. V. 71. P. 1141–1166.
  13. Longuet-Higgins M.S. On the distribution of the heights of sea waves: some effects of nonlinearity and finite band width // J. Geophys. Res. 1980. V. 85. P. 1519–1523.
  14. Massel S.R. Ocean surface waves: Their physics and prediction. Singapore: World Scientific Publishing, 1996. 491 p.
  15. Mori N., Onorato M., Janssen P.A.E.M. On the estimation of the kurtosis in directional sea states for freak wave forecasting // J. Phys. Oceanogr. 2011. V. 41. P. 1484–1497.
  16. Ochi M.K. Ocean waves. The stochastic approach. Cambridge Univ. Press, 1998. 332 p.
  17. Onorato M., Osborne A.R., Serio M., Bertone S. Freak waves in random oceanic sea states // Phys. Rev. Lett. 2001. V. 86. P. 5831–5834.
  18. Onorato M., Osborne A.R., Serio M. Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves // Phys. Rev. Lett. 2006. V. 96. 014503.
  19. Onorato M., Proment D., El G., Randoux S., Suret P. On the origin of heavy-tail statistics in equations of the Nonlinear Schrödinger type // Physics Letters A. 2016. V. 380. P. 3173–3177.
  20. Onorato M., Waseda T., Toffoli A., Cavaleri L., Gramstad O., Janssen P.A., Kinoshita T., Monbaliu J., Mori N., Osborne A.R., Serio M., Stansberg C.T., Tamura H., Trulsen K. Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events // Phys. Rev. Lett. 2009. V. 102. 114502.
  21. Pelinovsky E., Sergeeva (Kokorina) A. Numerical modeling of the KdV random wave field // Eur. J. Mech. B/Fluids. 2006. V. 25. P. 425–434.
  22. Ponce de Leon S., Guedes Soares C. Extreme wave parameters under North Atlantic extratropical cyclones // Ocean Modelling. 2014. V. 81. P. 78–88.
  23. Ruban V.P. Enhanced rise of rogue waves in slant wave groups // Письма в ЖЭТФ. 2011. Т. 94. № 3. С. 194–199.
  24. Serio M., Onorato M., Osborne A.R., Janssen P.A. On the computation of the Benjamin-Feir Index // Il Nuovo Cimento. 2005. V. 28. P. 893–903.
  25. Shemer L., Sergeeva A. An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield // J. Geophys. Res. Oceans. 2009. V. 114. C01015.
  26. Shemer L., Sergeeva A., Liberzon D. Effect of the initial spectral shape on spatial evolution of the statistics of unidirectional nonlinear random waves // J. Geophys. Res. 2010. V. 115. 12039.
  27. Slunyaev A., Kokorina A. On the probability of down-crossing and up-crossing rogue waves // Physics of Fluids. 2023. V. 35. 117109.
  28. Toffoli A., Onorato M., Babanin A.V., Bitner-Gregersen E., Osborne A.R., Monbaliu J. Second-order theory and setup in surface gravity waves: a comparison with experimental data // J. Phys Ocean. 2007. V. 37. P. 2726–2739.
  29. Tregubov A.S., Didenkulova E.G., Kokorina A.V. Probability Distributions for Finite Ensembles of Irregular Waves // Complex Investigation of the World Ocean (CIWO-2023): Proceedings of the VII International Conference of Young Scientists / Ed. T. Chaplina. Cham: Springer, 2023. P. 160–174.
  30. Zakharov V. Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid // Eur. J. Mech. B / Fluids. 1999. V. 18. P. 327–344.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).