INSTABILITY OF THE KOLMOGOROV FLOW IN A MODEL TAKING INTO ACCOUNT EKMAN FRICTION AND THE BETA EFFECT
- Authors: Kalashnik M.V.1,2,3
-
Affiliations:
- Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- FGBU “NPO “Typhoon”
- Issue: Vol 61, No 5 (2025)
- Pages: 555-564
- Section: Articles
- URL: https://ogarev-online.ru/0002-3515/article/view/360433
- DOI: https://doi.org/10.7868/S3034648725050012
- ID: 360433
Cite item
Abstract
The paper studies the stability of spatially periodic flow in a model taking into account bottom friction and the beta effect. Within the framework of the linear approximation, a stability criterion for the flow in a quasi-geostrophic model with bottom friction is obtained. To describe the nonlinear stability, the Galerkin method with three basic Fourier harmonics is used. It is shown that the exponential growth of linear disturbances at the nonlinear stage of development is replaced by the regime of establishing stationary periodic disturbances. A linear model of periodic flow stability with joint consideration of bottom friction and the beta effect is developed. It is shown that taking into account the beta effect leads to the development of oscillatory instability.
Keywords
About the authors
M. V. Kalashnik
Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; FGBU “NPO “Typhoon”
Email: kalashnik-obn@mail.ru
Moscow, Russia; Moscow, Russia; Obninsk, Russia
References
- Батчаев А.М., Курганский М.В. О неустойчивости периодического сдвигового течения слабостратифицированной жидкости // Изв. АН СССР. Физика атмосферы и океана. 1986. Т. 22. № 1. С. 3–9.
- Булатов В.В., Владимиров Ю.В. Волны в стратифицированных средах. М.: Наука, 2015. 735 с.
- Гледзер Е.Б., Долженский Ф.В., Обухов А.М. Системы гидродинамического типа и их применение. М.: Наука, 1981. 366 с.
- Калашник М.В., Курганский М.В., Чхеидзе О.Г. Бароклинная неустойчивость в геофизической гидродинамике // Успехи физических наук. 2022. Т. 192. № 10. С. 1110–1144.
- Мешалкин Л.Д., Синай Я.Г. Исследование устойчивости стационарного решения одной системы уравнений плоского движения несжимаемой вязкой жидкости // Прикладная математика и механика. 1961. Т. 25. № 6. С. 1700–1705.
- Обухов А.М. Течение Колмогорова и его лабораторное моделирование // Успехи математических наук. 1983. Т. 38. Вып. 4 (232). С. 101–111.
- Balmforth N.J., Young Y.N. Stratified Kolmogorov flow // J. Fluid Mech. 2002. V. 450. P. 131–167.
- Beaumont D. The stability of spatially periodic flows // J. Fluid Mech. 1981. V. 108. P. 461–474.
- Beléndez A., Pascual C., Méndez D., Beléndez T., Neipp C. Exact solution for the nonlinear pendulum // Revista Brasileira de Ensino de Física. 2007. V. 29 (4). P. 645–648.
- Boffetta G., Celani A., Mazzino A. Drag reduction in the turbulent Kolmogorov flow // Phys. Rev. E. V. 71. 2005. 036307.
- Fronts, Waves and Vortices in Geophysical Flows. Lecture Notes in Physics. / Ed. J.B. Flor. Berlin, Heidelberg: Springer-Verlag, 2010. 192 pp.
- Goton K., Yamada M., Mizushima Y. The theory of stability of spatially periodic flows // J. Fluid Mech. 1983. V. 127. P. 45–58.
- Kalashnik M., Kurgansky M. Nonlinear dynamics of long-wave perturbations of the Kolmogorov flow for large Reynolds numbers // Ocean Dyn. 2018. V. 68. P. 1001–1012.
- Kalashnik M.V. Long-wave instabilities in the SQG model with two boundaries // Geophys. Astrophys. Fluid Dyn. 2021. V. 115 (4). P. 393–411.
- Kalashnik M.V., Kurgansky M.V., Kostrykin S.V. Instability of surface quasigeostrophic spatially periodic flows // J. Atmos. Sci. 2020. V. 77. P. 239–255.
- Kalashnik M.V., Chkheidze O.G., Kurgansky M.V. Discrete SQG models with two boundaries and baroclinic instability of jet flows // Phys. Fluids. 2021. V. 33. 076608.
- Kalashnik M.V., Kurgansky M.V. Nonlinear Oscillations in a Two-Dimensional Spatially Periodic Flow // Eur. Phys. J. Plus. 2024. V. 139. 105.
- Kim S., Okamoto H. Unimodal patterns appearing in the Kolmogorov flows at large Reynolds numbers // Nonlinearity. 2015. V. 28. P. 3219–3242.
- Lapeyre G., Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory // J. Phys. Oceanogr. 2006. V. 36. P. 165–176.
- Lucas D., Kerswell R. Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains // J. Fluid Mech. 2014. V. 750. P. 518–554.
- Manfroi A., Young W. Stability of β-plane Kolmogorov flow // Phys. D.: Nonlinear Phenomena. 2002. V. 162. P. 208–232.
- Matsuda M. Stability of the basic solution of Kolmogorov flow with a bottom friction // J. Math. 2010. V. 33. P. 65–72.
- Pedlosky J. Geophysical Fluid Dynamics. Berlin, New York: Springer-Verlag, 1987. 710 pp.
- Pedlosky J. The effect of beta on the downstream development of unstable, chaotic baroclinic waves // J. Phys. Oceanogr. 2019. V. 49. P. 2337–2343.
- Sivashinsky G. Weak turbulence in periodic flows // Phys. D.: Nonlinear Phenomena. 1985. V. 17. P. 243–255.
- Sivashinsky G., Yakhot V. Negative viscosity effect in large scale flows // Phys. Fluids. 1985. V. 28. P. 1040–1042.
- Thess A. Instabilities in two-dimensional spatial periodic flows. Part I: Kolmogorov flow // Phys. Fluids. 1992. V. 4 (7). P. 1385–1395.
- Vallis G.K. Atmospheric and Oceanic Fluid Dynamics. Cambridge: Cambridge University Press, 2006. 760 pp.
Supplementary files



