Variability of the Dome of Temperature of the Weddell Sea Deep Water Depending on the Intensity of the Cyclonic Wind Field
- 作者: Morozov E.G.1, Bagatinskaya V.V.2,3,4, Bagatinsky V.A.1,2,3,4, Diansky N.A.2,3,4
-
隶属关系:
- Shirshov Institute of Oceanology of the RAS
- Lomonosov Moscow State University
- Zubov State Oceanographic Institute
- Marchuk Institute of Computational Mathematics
- 期: 卷 60, 编号 5 (2024)
- 页面: 679-698
- 栏目: Articles
- URL: https://ogarev-online.ru/0002-3515/article/view/282070
- DOI: https://doi.org/10.31857/S0002351524050093
- EDN: https://elibrary.ru/HXQTNC
- ID: 282070
如何引用文章
详细
Variations in the position of the dome of Weddell Sea Deep Water was studied based on the EN4 data on temperature and salinity for monthly mean conditions in February and August in 1993–2012 depending on the wind friction stress calculated according to the JRA55-do data. The dome itself is considered in the region 60–67° S and 10–25° W. The range of potential temperatures in the layer of Weddell Sea Deep Water is 0.02–0.2°C. Observed mean data of the dome of isotherms and isopycnals in February from 1993 to 2012 is formed as a sequence of the intensification of the thermohaline circulation in general and the wind circulation of water in the Weddell Sea. Under the influence of seasonal variability of the cyclonic nature and the intensity of the wind field, isotherms experience periodic rise and fall. The outflow of deep water from the Weddell Sea mainly occurs through the Orkney Passage over a transverse ridge of about 3600 m deep. Depending on the rise or fall of the isotherms in the area of this passage, warmer or colder Antarctic Bottom Waters enter the Scotia Sea.
全文:

作者简介
E. Morozov
Shirshov Institute of Oceanology of the RAS
编辑信件的主要联系方式.
Email: egmorozov@mail.ru
俄罗斯联邦, 36, Nakhimovsky Ave., Moscow, 117218
V. Bagatinskaya
Lomonosov Moscow State University; Zubov State Oceanographic Institute; Marchuk Institute of Computational Mathematics
Email: egmorozov@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991; 6, Kropotkinskaya St., Moscow, 119034; 8, Gubkin St., Moscow, 119333
V. Bagatinsky
Shirshov Institute of Oceanology of the RAS; Lomonosov Moscow State University; Zubov State Oceanographic Institute; Marchuk Institute of Computational Mathematics
Email: egmorozov@mail.ru
俄罗斯联邦, 36, Nakhimovsky Ave., Moscow, 117218; 1, Leninskie Gory, Moscow, 119991; 6, Kropotkinskaya St., Moscow, 119034; 8, Gubkin St., Moscow, 119333
N. Diansky
Lomonosov Moscow State University; Zubov State Oceanographic Institute; Marchuk Institute of Computational Mathematics
Email: egmorozov@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991; 6, Kropotkinskaya St., Moscow, 119034; 8, Gubkin St., Moscow, 119333
参考
- Антипов Н.Н., Клепиков А.В. Циклонические круговороты окраинных морей Восточной Антарктиды // Арктика и Антарктика. М.: Наука. 2003. Вып. 2 (36). С. 126–148.
- Багатинский В.А., Дианский Н.А. Вклады климатических изменений температуры и солености в формирование трендов термохалинной циркуляции Северной Атлантики в 1951–2017 гг. // Вестник Московского университета. Сер. 3: Физика, астрономия. 2022. № 3. С. 73–88.
- Багатинский В.А., Дианский Н.А. Изменчивость термохалинной циркуляции Северной Атлантики в различные фазы Атлантической мультидекадной осцилляции по данным океанских объективных анализов и реанализов // Изв. Российской академии наук. Физика атмосферы и океана. 2021. Т. 57. № 2. С. 1–14. https://doi.org/10.31857/S0002351521020024
- Володин Е.М., Гусев А.В., Дианский Н.А., Ибраев Р.А., Ушаков К.В. Воспроизведение циркуляции мирового океана по сценарию CORE-II с помощью численных моделей // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 1. С. 97–111. https://doi.org/10.7868/S0003351518010105
- Володин Е.М., Дианский Н.А., Гусев А.В. Воспроизведение и прогноз климатических изменений в 19–21 веках с помощью модели земной климатической системы ИВМ РАН // Изв. РАН. Физика атмосферы и океана. 2013. Т. 49. № 4. C. 379–400. https://doi.org/10.7868/S000235151304010X
- Володин Е.М., Дианский Н.А., Гусев А.В. Воспроизведение современного климата с помощью совместной модели общей циркуляции атмосферы и океана INMCM4.0 // Изв. РАН. Физика атмосферы и океана. 2010. Т. 46. № 4. С. 448–466. https://doi.org/10.1134/S000143381004002X
- Гурецкий В.В., Данилов А.И., Малек В.Н. Климатическая структура круговорота Уэдделла // Исследования уэдделловского круговорота. Океанографические условия и особенности развития планктонных сообществ: Сб. науч. тр. М.: ВНИРО. 1990. С. 4–30.
- Дианский Н.А., Багатинский В.А. Термохалинная структура вод Северной Атлантики в различные фазы Атлантической мультидекадной осцилляции // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 6. С. 157–170. https://doi.org/10.31857/S0002-3515556157-170
- Дианский Н.А., Володин Е.М. Воспроизведение современного климата с помощью совместной модели общей циркуляции атмосферы и океана // Изв. РАН. Физика атмосферы и океана. 2002. Т. 38. № 6. С. 824–840.
- Дианский Н.А., Залесный В.Б., Мошонкин С.Н., Русаков А.С. Моделирование муссонной циркуляции Индийского океана с высоким пространственным разрешением // Океанология. 2006. Т. 46. № 4. C. 421–442.
- Дианский Н.А., Степанов Д.В., Гусев А.В., Новотрясов В.В. Роль ветрового и термического воздействий в формировании изменчивости циркуляции вод в Центральной котловине Японского моря с 1958 по 2006 гг. // Изв. РАН. Физика атмосферы и океана. 2016, Т. 52, № 2, с. 234–245. Doi:4. 10.7868/S0002351516010028
- Клепиков В.В. Гидрология моря Уэдделла // Труды Сов. Антарктической Экспедиции. 1963. Т. 17. С. 45–93.
- Кубрякова Е.А., Коротаев Г.К. Механизм горизонтального массо- и солеобмена между водами континентального склона и центральной части Черного моря. // Изв. Российской академии наук. Физика атмосферы и океана. 2017. Т. 53. № 1. С. 115–124.
- Тараканов Р.Ю., Гриценко А.М. Струи Антарктического циркумполярного течения в проливе Дрейка по данным гидрофизических разрезов // Океанология. 2018. Т. 58. № 4. С. 541–555. doi: 10.1134/S003015741804010X
- Фрей Д.И., Морозов Е.Г., Фомин В.В., Дианский Н.А. Пространственная структура потока антарктических вод в разломе Вима Срединно-Атлантического хребта // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 6. С. 727–732
- Abrahamsen E.P., Meijers A.J.S., Polzin K.L., Naveira Garabato A.C., King B.A., Firing Y.L., Sallée J.-B., Sheen K.L., Gordon A.L., Huber B.A., Meredith M.P. Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation // Nature Climate Change. 2019. V. 9. № 10. P. 742–746. doi: 10.1038/s41558-019-0561-2
- Andersen O.B., Knudsen P. Deriving the DTU15 global high resolution marine gravity field from satellite altimetry // In: ESA living planet symposium Prague, Czech Republic. 2016.
- Anderson D.L.T., Gill A.E. Spin-up of a stratified ocean with applications to upwelling // Deep Sea Res. 1975. V. 22. P. 583–596.
- Armitage T.W.K., Kwok R., Thompson A.F., Cunningham G. Dynamic topography and sea level anomalies of the Southern Ocean: variability and teleconnections // J Geophys Res Oceans. 2018. V. 123. P. 613–630. https://doi.org/10.1002/2017JC013534
- Baines P.G., Condie S. Observation and modelling of Antarctic downslope flows: a review, ocean, ice, and atmosphere: interactions at the Antarctic continental margin // Antarctic Res Ser. Washington DC: AGU. 1998. V. 75. P. 29–49. https://doi.org/10.1029/AR075p0029
- Becker J.J., Sandwell D.T., Smith W.H.F., Braud J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS // Mar Geod. 2009. V. 32. № 4. P. 355–371. https://doi.org/10.1080/ 01490410903297766. https://www.gebco.net/data_and_products/gridded_bathymetry_ data/gebco_2021
- Campos E.J.D., van Caspel M.C., Zenk W., Morozov E.G., Frey D.I., Piola A.R., Meinen C.S., Sato O.T., Perez R.C., Dong S. Warming trend in the abyssal flow through the Vema Channel in the South Atlantic // Geophysical Research Letters. 2021. V. 48. № 19. e2021GL094709. https://doi.org/10.1029/2021GL094709
- Coles V.J., McCartney M.S., Olson B.D., Smethie W.J. Changes in Antarctic Bottom Water properties in the western South Atlantic in the late 1980s // J Geophys Res Oceans. 1996 V. 101. № C4. P. 8957–8970.
- Deacon G.E.R. The hydrology of the Southern Ocean // Discovery Reports. 1937. V. 15. P. 1–124.
- Diansky N.A., Bagatinskaya V.V., Gusev A.V., Morozov E.G. Geostrophic and Wind-Driven Components of the Antarctic Circumpolar Current // In: Morozov E.G., Flint M.V., Spiridonov V.A. (eds) Antarctic Peninsula Region of the Southern Ocean. Advances in Polar Ecology, vol 6. Springer, Cham. 2022. P. 3–20. https:// doi.org/10.1007/978-3-030-78927-5_1
- Downes S.M., Farneti R., Uotila P., Griffies S.M. et al. An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. // Ocean Modelling. 2015. V. 94. P. 67–94.
- Fahrbach E., Hoppema M., Rohardt G., Schröder M., Wisotzki A. Decadal-scale variations of water mass properties in the deep Weddell Sea // Ocean Dynam. 2004. V. 54. P. 77–91, doi: 10.1007/s10236-003-0082-3
- Fahrbach E., Rohardt G., Scheele N., Schröder M., Strass V., Wisotzki A. Formation and discharge of deep and bottom water in the Northwestern Weddell Sea // J Mar Res. 1995. V. 53. P. 515–538
- Farneti R., Downes S.M., Griffies S.M., Marsland S.J., Behrens E., et al. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations // Ocean Modelling. 2015. V. 93. P. 84–120. doi: 10.1016/j.ocemod.2015.07.009.
- Foldvik A., Gammelsrød T., Tørresen T. Circulation and water masses on the southern Weddell Sea shelf // In: Jacobs S.S. (ed) Oceanology of the Antarctic continental shelf, Antarctic research series. AGU, Washington, DC. 1985. V. 43. P. 5–20
- Foster T.D., Carmack E.C. Frontal zone mixing and Antarctic bottom water formation in the southern Weddell Sea // Deep-Sea Res. 1976. № 23. P. 301–317. https://doi.org/10.1016/0011-7471(76)90872-X
- Frey D.I., Morozov E.G., Fomin V.V., Diansky N.A., Tarakanov R.Y. Regional modeling of Antarctic Bottom Water flows in the key passages of the Atlantic // Journal of Geophysical Research: Oceans. 2019. V. 124. № 11. P. 8414–8428. doi: 10.1029/2019JC015315
- Gill A.E. Circulation and bottom water formation in the Weddell Sea // Deep-Sea Research. 1973. V. 20. P. 111–140.
- Good S.A., Martin M.J., Rayner N.A. EN4: quality-controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates // J Geophys Res Oceans. 2013. V. 118. P. 6704–6716. https://doi.org/10.1002/2013JC009067
- Gordon A., Huber B., McKee D., Visbeck M. A seasonal cycle in the export of bottom water from the Weddell Sea // Nature Geosci. 2010. V. 3. P. 551–556. https://doi.org/10.1038/ngeo916
- Gordon A.L., Visbeck M., Huber B. Export of Weddell Sea deep and bottom water // Journal of Geophysical Research: Oceans. 2001. V. 106. № C5. P. 9005–9017. doi: 10.1029/2000jc000281
- Gouretski V., Reseghetti F. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database // Deep-Sea Res. 2010. № 57. P.812–834.
- Griffies S.M., Biastoch A., Boening C. et al. Coordinated Ocean-ice Reference Experiments (COREs) // Ocean Modelling. 2009. V. 26. P. 1–46. https://doi.org/ 10.1016/j.ocemod.2008.08.007.
- Ingleby B., Huddleston M. Quality control of ocean temperature and salinity profiles — historical and real-time data // J Mar Syst. 2007. V. 65. P. 158–175
- Ivanov V.V., Gusev A., Diansky N., Sukhonos P. Modelled response of Arctic and North Atlantic thermohaline structure and circulation to the prolonged unidirectional atmospheric forcing over the Arctic Ocean // Climate Dynamics. 2024. https://doi.org/10.1007/s00382-024-07239-6
- Jacobs S.S. On the nature and significance of the Antarctic slope front // Mar. Chem. 1991. V. 35. P. 9–24.
- Jullion L., Naveira Garabato A.C., Bacon S., Meredith M.P., Brown P.J., Torres-Valdes S., Speer K.G., Holland P.R., Dong J., Bakker D., Hoppema M., Loose B., Venables H.J., Jenkins W.J., Messias M.-J., Fahrbach E. The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation // J. Geophys Res Oceans. 2014. V. 119. P. 3357–3377. doi: 10.1002/2013JC009725.
- Locarnini R.A., Whitworth T., Nowlin W.D. The importance of the Scotia Sea on the outflow of Weddell Sea Deep Water // J. Mar. Res. 1993. V. 51. P. 135–153.
- Lynn R.J., Reid J.L. Characteristics and circulation of deep and abyssal waters // Deep-Sea Res. 1968. V. 15. P. 577–598.
- Mantyla A.W., Reid J.L. Abyssal characteristics of the World Ocean waters // Deep-Sea Res. 1983. V. 30. № 8. P. 805–833. https://doi.org/10.1016/0198-0149(83)90002-X
- Masson-Delmotte V., Zhai P., Pirani A. et al. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC 6) // Cambridge University Press. 2021. P. 1–41.
- Maximenko N., Knudsen P., Centurioni L., Andersen O., Hafner J., Melnichenko O. New mean dynamic ocean topography derived from a synthesis of satellite altimeter, gravity, and scatterometer data and trajectories of Lagrangian drifters // Ocean Surface Topography Science Team Meeting. Konstanz, Germany. 2014.
- Meredith M.P., Locarnini R.A., van Scoy K.A., Watson A.J., Heywood K.J., King B.A. On the sources of Weddell gyre Antarctic bottom water // J. Geophys Res Oceans. 2000. V. 105. № 1. P. 1093–1104
- Meredith M.P., Naveira Garabato A.C., Gordon A.L., Johnson G.C. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005 // J. Climate. 2008. V. 21. P. 3327–3343
- Meredith M.P., Naveira Garabato A.C., Stevens D.P., Heywood K.J., Sanders R.J. Deep and bottom waters in the Eastern Scotia Sea: rapid changes in properties and circulation // J. Phys. Oceanogr. 2001a. V. 31. № 8. P. 2157–2168.
- Meredith M.P., Watson A., van Scoy K.V. Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea // J. Geophys. Res. Oceans. 2001b. V. 106. № C2. P. 2899–2919.
- Morozov E.G., Frey D.I., Zuev O.A., Velarde M.G., Krechik V.A., Mukhametianov R.Z. Hydraulically Controlled Bottom Flow in the Orkney Passage // Water MDPI. 2022. V. 14 № 19. 3088. https://doi.org/10.3390/w14193088
- Morozov E.G., Tarakanov R.Y., Frey D.I. Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic // Observations, Analysis, and Modeling, Springer Nature. 2021. 483 p.
- Naveira Garabato A.C., Heywood K.J., Stevens D.P. Modification and pathways of Southern Ocean deep waters in the Scotia Sea // Deep-Sea Res. 2002a. № 49. P. 681–705.
- Naveira Garabato A.C., McDonagh E.L., Stevens D.P., Heywood K.J., Sanders R.J. On the export of Antarctic Bottom Water from the Weddell Sea // Deep-Sea Research II. 2002b. V. 49. P. 4715–4742
- Orsi A.H., Johnsson G.C., Bullister J.L. Circulation, mixing, and production of Antarctic bottom water // Prog. Oceanogr. 1999. V. 43. P. 55–109. https://doi.org/10.1016/S0079-6611(99)00004-X
- Orsi A.H., Whitworth T., Nowlin W.D. On the meridional extent and fronts of the Antarctic Circumpolar Current // Deep Sea Research Part I: Oceanographic Research Papers. 1995. V. 42. № 5. P. 641–673. doi: 10.1016/0967-0637(95)00021-w
- Reid J.L. On the total geostrophic circulation of the South Pacific Ocean: Flow patterns tracers and transports // Progr. Oceanog. 1986. V. 16. P. 1–61.
- Rintoul S.R., Hughes, C.W., Olbers, D. Chapter 4.6 The antarctic circumpolar current system // Ocean Circulation and Climate — Observing and Modelling the Global Ocean. 2001. XXXVI. P. 271–302. doi: 10.1016/s0074-6142(01)80124-8.
- Rio M.H., Mulet S., Picot N. Beyond GOCE for the ocean circulation estimate: synergeticuse of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents // Geophys Res Lett. 2014. V. 41. P. 8918–8925. https://doi.org/10.1002/2014GL061773
- Ryan S., Schröder M., Huhn O., Timmermann R. On the warm inflow at the eastern boundary of the Weddell Gyre // Deep Sea Research Part I: Oceanographic Research Papers. 2016. V. 107. P. 70–81. https://doi.org/10.1016/j.dsr.2015.11.002
- Sarkisyan A.S., Sündermann J.E. Modelling Ocean Climate Variability // Berlin: Springer, 2009. 374 p.
- Schröder M., Fahrbach E. On the structure and the transport of the eastern Weddell Gyre // Deep-Sea Res. Pt. II. 1999. V. 46. P. 501–527. doi: 10.1016/S0967-0645(98)00112-X.
- Silvano A., Purkey S., Gordon A.L., Castagno P., Stewart A.L., Rintoul S.R., et al. Observing Antarctic Bottom Water in the Southern Ocean // Front. Mar. Sci. 2023. V. 10. 1221701. https://doi.org/10.3389/fmars.2023.1221701
- Sokolov S., Rintoul S.R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths // J. Geophys. Res. 2009. V. 114, C11018. http://dx.doi.org/10.1029/2008JC005108
- Speer K., Rintoul S.R., Sloyan B. The diabatic Deacon cell // Journal of Physical Oceanography. 2000. V. 30. № 12. P. 3212–3222. https://doi.org/10.1175/1520-0485(2000)030<3212:tddc>2.0.co;2
- Stepanov V.N., Iovino D., Masina S., Storto A., Cipollone A. Methods of calculation of the Atlantic meridional heat and volume transports from ocean models at 26.5°N // J. Geophys. Res. Oceans. 2016. V. 121. P. 1459–1475. https://doi.org/10.1002/2015JC011007
- Stocker T.F., Qin D., Plattner G.K. et al. (eds.). IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I IPCC 5 // Cambridge University Press. 2013. 1535 p. https://doi.org/10.1017/CBO9781107415324.
- Stommel H., Arons A.B. On the abyssal circulation of the World Oceans // Deep-Sea Res. 1960. V. 6. P. 140–154.
- Sverdrup H.U. On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current // Discovery Reports. 1933. V. VII. P. 139–170.
- Thompson D.W.J, Solomon S. Interpretation of recent Southern Hemisphere climate change // Science. 2002. V. 296. P. 895–899.
- Tsujino H., Urakawa S., Nakano H. et al. JRA-55 based surface dataset for driving ocean — sea-ice models (JRA55-do) // Ocean Modelling. 2018. V. 130. P. 79–139. https://doi.org/10.1016/j.ocemod.2018.07.002
- Voevodin V.l., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin Vad., Zhumatiy S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community // Supercomputing Frontiers and Innovations. 2019. V. 6. № 2. P. 4–11. doi: 10.14529/jsfi190201
- Wüst G. Schichtung und Zirkulation des Atlantischen Ozeans, Das Bodenwasser und die Stratosphäre // In: A. Defant (Ed) Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs - und Vermessungsschiff “Meteor” 1925–1927. Walter de Gruyter & Co, Berlin. 1936. V. 6. № 1. 411 p.
- Zenk W., Morozov E. Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel // Geophysical Research Letters. 2007. V. 34. № 14. L14607.
补充文件
