On parameterization of dissipative processes in turbulent transport models for description of thermohydrodynamics and biogeochemistry of stratified internal water bodies
- Authors: Gladskikh D.S.1,2, Mortikov E.V.2,3
-
Affiliations:
- Institute of Applied Physics of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Institute of Numerical Mathematics of the Russian Academy of Sciences
- Issue: Vol 60, No 3 (2024)
- Pages: 335-346
- Section: Articles
- URL: https://ogarev-online.ru/0002-3515/article/view/274363
- DOI: https://doi.org/10.31857/S0002351524030063
- EDN: https://elibrary.ru/JHUITT
- ID: 274363
Cite item
Abstract
In this paper, we discuss parameterizations of turbulent mixing processes in models of inland water bodies (lakes and reservoirs) that allow turbulent fluctuations to develop in the presence of small velocity shear even in the case of highly stable stratification. A parameterization of the turbulent Prandtl number is proposed, which takes into account the non-gradient correction for the mass flux and depends on two parameters: the anisotropy parameter, which describes the differences in the vertical and horizontal scales of the density field correlations, and the maximum flux Richardson number. It is shown that the value of the maximum flux Richardson number and, as a consequence, the asymptotical increase in the turbulent Prandtl number under strong stability are associated with differences in the integral time scales determined by the dissipation rate of the kinetic or potential energy and the fluctuation intensities of the corresponding fields. This is consistent with the direct numerical simulation of shear-driven stably stratified turbulence. The anisotropy parameter sets the transitional regime from neutral stratification to strong stability. Using the proposed parameterization, numerical experiments were carried out to reproduce the thermal and biochemical regime of a inland water bodies (Lake Kuivajärvi and Rybinsk Reservoir). The results show that the distribution of biochemical concentrations, gas exchange processes are more sensitive to the value of maximum Richardson flux number.
Full Text

About the authors
D. S. Gladskikh
Institute of Applied Physics of the Russian Academy of Sciences; Lomonosov Moscow State University
Author for correspondence.
Email: daria.gladskikh@gmail.com
Russian Federation, Nizhny Novgorod; Moscow
E. V. Mortikov
Lomonosov Moscow State University; Institute of Numerical Mathematics of the Russian Academy of Sciences
Email: daria.gladskikh@gmail.com
Russian Federation, Moscow; Moscow
References
- Власов А. А. Статистические функции распределения. М.: Наука. 1966. 356 с.
- Гладских Д. С., Степаненко В. М., Мортиков Е. М. О влиянии горизонтальных размеров внутренних водоемов на толщину верхнего перемешанного слоя // Водные ресурсы. 2021. Т. 48. № 2. С. 155–163.
- Двуреченская С. Я., Булычева Т. М., Савкин В. М. Водно-экологические особенности формирования гидрохимического режима Новосибирского водохранилища // Вода: химия и экология. 2012. № 9. С. 8–13.
- Колмогоров А. Н. Уравнения турбулентного движения несжимаемой жидкости // Изв. АН СССР. Сер. Физ. 1942. Т. 6. С. 56–58.
- Лыкосов В. Н. О проблеме замыкания моделей турбулентного пограничного слоя с помощью уравнений для кинетической энергии турбулентности и скорости ее диссипации // Изв. АН СССР. Физика атмосферы и океана. 1992. Т. 28. С. 696–704.
- Монин А. С., Озмидов Р. В. Океанская турбулентность. Л.: Гидрометеоиздат. 1981. 376 с.
- Монин А. С., Яглом А. М. Статистическая гидромеханика / Часть 1. Под ред. Г. С. Голицына. М.: Наука. 1965. 641 с.
- Мортиков Е. В., Глазунов А. В., Дебольский А. В., Лыкосов В. Н., Зилитинкевич С. С. О моделировании скорости диссипации кинетической энергии турбулентности // Доклады академии наук. 2019. Т. 489. № 4. С. 414–418.
- Онищенко И. П. Роль цимлянского водохранилища в экономике и экологии региона // Современные научно-практические решения XXI века. 2016. С. 322–325.
- Островский Л. А., Троицкая Ю. И. Модель турбулентного переноса и динамика турбулентности в стратифицированном сдвиговом потоке // Изв. АН СССР. Физика атмосферы и океана. 1987. № 3. С. 1031–104.
- Петросян В. С., Анциферова Г. А., Акимов Л. М., Кульнев В. В., Шевырев С. Л., Акимов Е. Л. Оценка и прогноз эколого-санитарного состояния Воронежского водохранилища на 2018–2019 гг. // Экология и промышленность России. 2019. Т. 23. № 7.
- Соустова И. А., Троицкая Ю. И., Гладских Д. С., Мортиков Е. В., Сергеев Д. А. Простое описание турбулентного переноса в стратифицированном сдвиговом потоке применительно к описанию термогидродинамики внутренних водоемов // Изв. РАН. Физика атмосферы и океана. 2020. T. 56. № 6. С. 689–699.
- Хоружая Т. А., Минина Л. И. Оценка экологического состояния Цимлянского, Пролетарского и Веселовского водохранилищ // Метеорология и гидрология. 2017. № 5. С. 116–122.
- Щепетова В. А., Толстова Т. В. Анализ экологического состояния Пензенского водохранилища // Фундаментальные исследования. 2011. № 8–1. С. 188–189.
- Abbasi A., Annor F. O., Giesen N. V. Investigation of temperature dynamics in small and shallow reservoirs, case study: Lake Binaba, Upper East Region of Ghana // Water. 2016. V. 8. № 3. P. 84.
- Beguir C., Dekeyser I., Launder B. E. Ratio of scalar and velocity dissipation time scales in shear flow turbulence // Phys. Fluids. 1978. V. 21. № 3. P. 307–310.
- Burchard H. Applied turbulence modelling in marine waters. Berlin: Springer-Verlag Berlin Heildelberg. 2002. 218 p.
- Canuto V. M., Howard A., Cheng Y., Dubovikov M. S. Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities // J. Phys. Oceanogr. 2001. V 31. № 6. P. 1413–1426.
- Fang Xing, Stefan Heinz G. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios // Limnology and Oceanography. 2009. V. 54. № 6. Part 2. P. 2359–2370.
- Gladskikh D., Ostrovsky L., Troitskaya Y, Soustova I, Mortikov E. Turbulent Transport in a Stratified Shear Flow // J. Mar. Sci. Eng. 2023. V. 11 (1). P. 136.
- Heiskanen J. J., Mammarella I., Ojala A., Stepanenko V., Erkkilä K. M., Miettinen H., Sandström H., Eugster W., Leppäranta M., Järvinen H. et al. Effects of water clarity on lake stratification and lake‐atmosphere heat exchange // J. Geophys. Res. Atmos. 2015. V. 120. P. 7412–7428.
- Jöhnk K. D. 1-D-hydrodynamische Modelle in der Limnophysik: Turbulenz-Meromixis-Sauerstoff (Habilitation): Ph. D. Thesis. Technical University, Darmstadt. 2000. 235 p.
- Kadantsev E., Mortikov E., Zilitinkevich S. The resistance law for stably stratified atmospheric planetary boundary layers // Q.J.R. Met. Soc. 2021. V. 147. № 737. P. 2233–2243.
- Kantha L., Clayson S. An improved mixed layer model for geophysical applications // J. Geophys. Res. 1994. V. 99. P. 25235–25266.
- Krinner G. Impact of lakes and wetlands on boreal climate // J. Geophys. Res.: Atmospheres. 2003. V. 108. № D16.
- Lundgren T. S. Distribution functions in the statistical theory of turbulence // Phys. Fluids. 1967. V. 10. P. 969–975.
- MacIntyre S., Jonsson A., Jansson M., Aberg J., Turney D. E., Miller S. D. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake // Geophys. Res. Lett. 2010. V. 37. № 24. L24604.
- Mammarella I., Nordbo A., Rannik Ü., Haapanala S., Levula J., Laakso H., Ojala A., Peltola O., Heiskanen J., Pumpanen J., Vesala T. Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland // J. Geophys. Res. Biogeosciences. 2015. V. 120. P. 1296–1314.
- Mauritsen T., Svensson G. Observations of Stably Stratified Shear-Driven Atmospheric Turbulence at Low and High Richardson Numbers // J. Atmos. Sci. 2007. V. 64. № 2. P. 645–655.
- Mauritsen T., Svensson G., Zilitinkevich S., Esau I., Enger L., Grisogono B. A Total Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers // J. Atmos. Sci. 2007. V. 64. № 11. P. 4113–4126.
- Mellor G., Yamada T. Development of a turbulence closure model for geophysical problems // Rev. of Geophys. and Space Physics. 1982. V. 20 (4). P. 851–875.
- Mortikov E. V., Glazunov A. V., Lykosov V. N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure–strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. V. 34. № 2. P. 119–132.
- Mortikov E. V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108–115.
- Rodi W. Prediction Methods for Turbulent Flows / Kollmann, W. Ed. Hemisphere: London, UK, 1980.
- Samuelsson P., Kourzeneva E., Mironov D. The impact of lakes on the European climate as simulated by a regional climate model. 2010. V. 14. № 2. P. 113.
- Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Vesala T. LAKE2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geosci. Model Dev. 2016. V. 9. № 5. P. 1977–2006.
- Stretch D. D., Rottman J. W., Venayagamoorthy S. K., Nomura K. K., Rehmann C. R. Mixing efficiency in decaying stably stratified turbulence // Dyn. Atmos. Oceans. 2009. V. 49. № 1. P. 25–36.
- Stroscio M. A. Enhancement of turbulence in a stratified fluid by the presence of a shear field // J. Stat. Phys. 1982. V. 28. P. 607–612.
- Sun L., Liang X.-Z., Ling T., Xu M., Lee X. Improving a Multilevel Turbulence Closure Model for a Shallow Lake in Comparison With Other 1-D Models // J. of Advances in Modeling Earth Systems. 2020. V. 12. № 7. e2019MS001971.
- Thiery W. et al. The impact of the African Great Lakes on the regional climate // Journal of Climate. 2015. V. 28. № 10. P. 4061–4085.
- Tranvik L. J., Downing J. A., Cotner J. B., Loiselle S. A., Striegl R. G., Ballatore T. J., Dillon P., Knoll L. B., Kutser T. et al. Lakes and reservoirs as regulators of carbon cycling and climate // Limnology and Oceanography. 2009. V. 54. P. 2298–2314.
- Umlauf L., Burchard H., Hutter K. Extending the k-ω turbulence model towards oceanic applications // Ocean Modelling. 2003. V. 5. P. 195–218.
- Venayagamoorthy S., Stretch D. On the turbulent Prandtl number in homogeneous stably stratified turbulence // J. Fluid Mech. 2010. V. 644. P. 359–369.
- Wang J. et al. Impacts of Lake Surface Temperature on the Summer Climate Over the Great Lakes Region // J. Geophys. Res.: Atmospheres. 2022. V. 127. № 11. e2021JD036231.
- Yamada T. The critical Richardson number and the ratio of the eddy transport coefficients obtained from a turbulence closure model // J. Atmos. Sci. 1975. V. 32. № 5. P. 926–933.
- Zasko G. V., Glazunov A. V., Mortikov E. V., Nechepurenko Y. M., Perezhogin P. A. Optimal energy growth in stably stratified turbulent Couette flow // Bound.-Layer Meteorol. 2022. P. 1–27.
- Zhu L. et al. Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau // Atmosphere-Ocean. 2018. V. 56. № 4. P. 230–239.
- Zilitinkevich S. S., Esau I., Kleeorin N., Rogachevskii I., Kouznetsov R. D. On the velocity gradient in stably stratified sheared flows. Part 1: asymptotic analysis and applications // Bound.-Layer Meteorol. 2010. V. 135. P. 505–511.
- Zilitinkevich S., Druzhinin O., Glazunov A., Kadantsev E., Mortikov E., Repina I., Troitskaya Y. Dissipation rate of turbulent kinetic energy in stably stratified sheared flows // Atmos. Chem. Phys. 2019. V. 19. № 4. P. 2489–2496.
- Zilitinkevich S. S., Elperin T., Kleeorin N., Rogachevskii I. Energy- and Flux-Budget (EFB) turbulence closure models for stably-stratified flows. Part I: Steady-state, homogeneous regimes // Bound.-Layer Meteorol. 2007. V. 125. P. 167–191.
- Zilitinkevich S. S., Elperin T., Kleeorin N., Rogachevskii I., Esau I. A hierarchy of Energy and Flux-Budget (EFB) turbulence closure models for stably-stratified geophysical flow // Bound.-Layer Meteorol. 2013. V. 146. P. 341–373.
Supplementary files
