Investigation of the reaction of hydrogen iodide with a chlorine atom in the atmosphere above the sea
- Autores: Larin I.K.1, Pronchev G.B.1, Trofimova Е.M.1
-
Afiliações:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Edição: Volume 60, Nº 2 (2024)
- Páginas: 265–274
- Seção: Articles
- URL: https://ogarev-online.ru/0002-3515/article/view/265568
- DOI: https://doi.org/10.31857/S0002351524020123
- EDN: https://elibrary.ru/KPIKGD
- ID: 265568
Citar
Resumo
By the method of resonant fluorescence (RF) of chlorine atoms and iodine atoms, the rate constant of the reaction of a chlorine atom with hydrogen iodide at a temperature of 298 K. The values of the reaction constants measured by both methods turned out to be quite close. The role of this reaction in the chemistry of the troposphere above the surface of the oceans is discussed.
Palavras-chave
Texto integral

Sobre autores
I. Larin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: eltrofimova@yandex.ru
Talrose Institute for Energy Problems of Chemical Physics
Rússia, 119334, Moscow, Leninsky pr., 38/2G. Pronchev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: eltrofimova@yandex.ru
Talrose Institute for Energy Problems of Chemical Physics
Rússia, 119334, Moscow, Leninsky pr., 38/2Е. Trofimova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: eltrofimova@yandex.ru
Talrose Institute for Energy Problems of Chemical Physics
Rússia, 119334, Moscow, Leninsky pr., 38/2Bibliografia
- Брасье Г., Соломон С. Аэрономия средней атмосферы: Химия и физика стратосферы и мезосферы / пер. Л.Д. Морозовой; под ред. А.Д. Данилова. Л.: Гидрометеоиздат, 1987. 412 с.
- Бубен С.Н., Ларин И.К, Мессинева Н.А., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Исследование атмосферной химии йодных соединений // Химическая физика. 2002. Т. 21. № 4. С. 52–60.
- Кикоин И.К. Таблицы физических величин. М.: Атомиздат, 1976. 1008 с.
- Ларин И.К., Белякова Т.И., Мессинева Н.А., Спасский А.И., Трофимова Е.М. Реакция сероводорода с атомарным хлором в области температур 273–366 K // Химическая физика. 2023. Т. 42. № 4. С. 89–94. https://doi.org/10.31857/S0207401X23040118
- Ларин И.К., Спасский А.И., Трофимова Е.М. Гомогенные и гетерогенные реакции углеводородов, содержащих атом йода // Изв. РАН. Энергетика. 2012. № 3. С. 44–52.
- Ларин И.К., Спасский А.И., Трофимова Е.М. Кинетика гетерогенной реакции сероводорода с оксидом йода в диапазоне температур 273–368 K // Химическая физика. 2020. Т. 39. № 10. С. 29–34. https://doi.org/10.31857/S0207401X2010009XI
- Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Образование атомарного йода в гетерогенной реакции хлора с йодметаном // Кинетика и катализ. 2010. Т. 51. № 3. С. 369–374.
- Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Механизм и кинетика реакции иодистого водорода с озоном // Кинетика и катализ. 2007. Т. 48. № 1. С. 5–11.
- Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Измерение констант скоростей реакций радикала IO с серосодержащими соединениями H2S, (CH3)2S и SO2 // Кинетика и катализ. 2000a. Т. 41. № 4. С. 485–491.
- Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Экспериментальное доказательство увеличения скорости реакции монооксида иода с монооксидом хлора на поверхности реактора // Кинетика и катализ. 2003. Т. 44. № 2. С. 218–227.
- Ларин К.И., Мессинёва Н.А., Невожай Д.В., Спасский А.И., Трофимова Е.М. Измерение эффективной константы скорости реакции монооксида иода с монооксидом хлора с образованием атомов иода // Кинетика и катализ. 2000b. Т. 41. № 3. С. 346–352.
- Физическая химия быстрых реакций / Пер. с англ. Е.В. Мозжухина и Ю.П. Петрова; Под ред. И.С. Заслонко. М.: Мир, 1976. 394 с.
- Arsene C., Barnes I., Becker K.H., Benter T. Gas-phase reaction of Cl with dimethyl sulfide: Temperature and oxygen partial pressure dependence of the rate coefficient // Int. J. Chem. Kinet. 2005. V. 37. P. 66–73. https://doi.org/10.1002/kin.20051
- Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens// J. Atmos. Chem. Phys. 2007. V. 7. P. 981–1191
- Atkinson R., Baulch D.L., Cox R.A., Hampson Jr., R.F., Kerr K.A., Troe J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Supplement IV, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry // J. Phys. Chem. Ref. Data. 1992. V. 21. № 4. P. 1125–1568.
- Badia A., Reeves C.E., Baker A.R., Saiz-Lopez A., Volkamer R., Koenig T.K., Apel E.C., Hornbrook R.S., Carpenter L.J., Andrews S.J., Sherwen T., von Glasow R. Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study using WRF-Chem // Atmos. Chem. Phys. 2019. V. 19. P. 3161–3189. https://doi.org/10.5194/acp-19-3161-2019.
- Behnke W., Zetsch C. Heterogeneous formation of chlorine atoms from various aerosols in the presence of O3 and HCl // J. Aerosol. Sci. 1989. V. 20. № 8. P. 1167–1170. https://doi.org/10.1016/0021-8502(89)90788-X
- Bergmann K., Moore C.B. Energy dependence and isotope effect for the total reaction rate of Cl + HI and Cl + HBr // J. Chem. Phys. 1975. V. 63. № 2. P. 643–649. https://doi.org/10.1063/1.431385
- Chang T., Liu S.-H., Zhen F.-T. Atmospheric concentrations of the Cl atom, CIO radical, and HO radical in the coastal marine boundary layer // Env. Res. 2004. V. 94(1). P. 67–74. https://doi.org/10.1016/j.envres.2003.07.008
- Chatfield R.B., Crutzen P.J. Are there interactions of iodine and sulfur species in marine air photochemistry? // J. Geophys. Res., 1990. V. 95. P. 22319–22341.
- Cicerone R.J. Halogens in the atmosphere // Rev. Geophys. Space Phys. 1981. V. 19. № 1. P. 123–139.
- Finlayson-Pitts B.J. The Tropospheric Chemistry of Sea Salt: A Molecular-Level View of the Chemistry of NaCl and NaBr // Chem. Rev. 2003. V. 103(12). P. 4801–4822. https://doi.org/10.1021/cr020653t
- Huang R.J., Seitz K., Neary T., O’Dowd C.D., Platt U., Hoffmann T. Observations of high concentrations of I2 and IO in coastal air supporting iodine-oxide driven coastal new particle formation // Geophys. Res. Lett. 2010. V. 37. P. L03803. https://doi.org/0.1029/2009GL041467
- Khamaganov V.G., Orkin V.L., Larin I.K. Study of the Reactions of OH with HCl, HBr, and HI between 298 K and 460 K // Int. J. Chem. Kinet. 2020. V. 52. P. 852–860. https://doi.org/10.1002/kin.21404
- Martino M., Mills G.P., Woetjen J., Liss P.S. A new source of volatile organoiodine compounds in surface seawater // Geophys. Res. Lett., 2009. V. 36. № 1. L01609. https://doi.org/10.1029/2008GL036334
- McFiggans G. Marine aerosols and iodine emissions // Nature. 2005. V. 433. № 7026. E13. https://doi.org/10.1038/nature03372
- McFiggans G., Coe H., Burgess R., Allan J., Cubison M., Alfarra M.R., Saunders R., Sais-Lopez A., Plane J.M.C., Wevill D.J., Carpenter L.J., Rickard A.R., Monks P.S. Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine // Atmos. Chem. Phys. 2004. V.4. № 3. P. 701–713. https://doi.org/1680-7324/acp/2004-4-701
- Mei C.C., Moore C.B. Temperature dependence of the total reaction rates for Cl + HI and Cl + HBr // J. Chem. Phys. 1977. V. 67. № 9. P. 3936–3939. https://doi.org/10.1063/1.435409
- Nakano J., Enamy S., Nakamichi S., Aloisio S., Hashimoto S., Kawasaki M. Temperature and Pressure Dep endence Study of the Reaction of IO Radicals with Dimethyl Sulfide by Cavity Ring-Down Laser Spectroscopy // J. Phys. Chem. A. 2003. V. 107. № 33. P. 6381–6387. https://doi.org/10.1021/jp0345147
- O’Dowd C.D., Jimenez J.L., Bahreini R., Flagan R.C., Seinfeld J.H., Ha¨meri K., Pirjola L., Kulmala M., Jennings S.G., Hoffmann T. Marine aerosol formation from biogenic iodine emissions // Nature. 2002. V. 417. P. 632–636. https://doi.org/10.1038/nature00775
- Saiz-Lopez A., Plane J.M.C., McFiggans G., Williams P.I., Ball S.M., Jones R.L., Hongwei C., Hoffmann T. Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation // Atmos. Chem. Phys. 2006. V. 6(4). P. 883–895. https://doi.org/10.5194/acp-6-883-2006
- Sayin H., McKee M.L. Computational Study of the Reactions between XO (X = Cl, Br, I) and Dimethyl Sulfide // J. Phys. Chem. A. 2004. V. 108. № 37. P. 7613–7620. https://doi.org/10.1021/jp0479116
- Singh H.B., Thakur A.N., Chen Y.E., Kanakidou M. Tetrachloroethylene as an indicator of low CI atom concentrations in the troposphere. // Geophys. Res. Lett. 1996. V. 23. № 12. P. 1529–1532. https://doi.org/10.1029/96GL01368
- Vaughan S., Ingham T., Whalley L.K., Stone D., Evans M.J., Read K.A., Lee J.D., Moller S.J., Carpenter L.J., Lewis A.C., Fleming Z.L., Heard D.E. Seasonal observations of OH and HO2 in the remote tropical marine boundary layer // Atmos. Chem. Phys. 2012. V. 12. P. 2149–2179. https://doi.org/10.5194/acp-12-2149-2012.
- Vogt R., Crutzen P., Sander R. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer // Nature. 1996. V. 383. P. 327–330. https://doi.org/10.1038/383327a0
- Wodarczyk F.J., Moore C.B. Laser-initiated chemical reactions: total absolute reaction rate constants for Cl+ HBr and Cl + HI // Chem. Phys. Lett. 1974. V. 26. № 4. P. 484–488. https://doi.org/10.1016/0009-2614(74)80396-9
- Yuan J., Misra A., Goumri A., Shao D.D., Marshall P. Kinetic Studies of the Cl + HI Reaction Using Three Techniques // J. Phys. Chem. A. 2004. V. 108. № 33. P. 6857–6862.
Arquivos suplementares
