Модели машинного обучения для автоматического выявления новых функциональных паттернов в многомерных временных рядах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предлагается метод и конкретная архитектура модели машинного обучения, которая помогает исследователям в различных областях автоматически выявлять функциональные закономерности в многомерных временных рядах из серии экспериментов. Исходная задача была формализована в терминах машинного обучения, поэтому у исследователей нет необходимости быть профессионалами в рассматриваемой предметной области. Эффективность метода была продемонстрирована в области нейрофизиологии для данных, где уже известно о существовании приведенного паттерна P300. Для дальнейших исследований представляет интерес обобщить предложенный метод на другие области, например данные с датчиков на производственных линиях или банковские транзакции.

Об авторах

А. И. Майсурадзе

МГУ им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: maysuradze@cs.msu.ru
Россия, Москва

Л. С. Сидоров

МГУ им. М.В. Ломоносова

Email: leon.sidorov@gmail.com
Россия, Москва

Список литературы

  1. Blankertz B., Muller K.R., Krusienski D.J., Schalk G., Wolpaw J.R., Schlogl A., et al. The BCI Competition iii: Validating Alternative Approaches to Actual BCI Problems // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006. V. 14 (2). P. 153–159.
  2. Oktay O., Schlemper J., Folgoc L.L., Lee M., Heinrich M., Misawa K. et. al. Attention U-Net: Learning Where to Look for the Pancreas // arXiv preprint arXiv:1804.03999, 2018.
  3. Lee H., Yune S., Mansouri M., Kim M., Tajmir S.H., Guerrier C.E. et. al. An Explainable Deep-learning Algorithm for the Detection of Acute Intracranial Haemorrhage from Small Datasets // Nature Biomedical Engineering. 2019. V. 3 (3). P. 173–182.
  4. Ardila D., Kiraly A.P., Bharadwaj S., Choi B., Reicher J.J., Peng L. et. al. End-to-end Lung Cancer Screening with Three-dimensional Deep Learning on Low-dose Chest Computed Tomography // Nature Medicine. 2019. V. 25 (6). P. 954–961.
  5. Sundararajan M., Taly A., Yan Q. Axiomatic Attribution for Deep Networks // Intern. Conf. on Machine Learning. PMLR. Sydney, Australia, 2017. P. 3319–3328.
  6. Caicedo-Torres W., Gutierrez J. ISeeU: Visually Interpretable Deep Learning for Mortality Prediction Inside the ICU // J. Biomedical Informatics. 2019. V. 98. P. 103269.
  7. Guo H., Kruger U., Wang G., Kalra M.K., Yan P. Knowledge-based Analysis for Mortality Prediction from CT Images // IEEE Biomedical and Health Informatics. 2019. V. 24 (2). P. 457–464.
  8. Van der Maaten L., Hinton G. Visualizing Data Using t-SNE // J. Machine Learning Research. 2008. V. 9(11).
  9. Cecotti H., Graser A. Convolutional Neural Networks for P300 Detection with Application to Brain-computer Interfaces // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. V. 33 (3). P. 433–445.
  10. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L. et al. Attention is All you Need // Advances in Neural Information Processing Systems. 2017. V. 30.
  11. Krizhevsky A., Sutskever I., Hinton G. E. Imagenet Classification with Deep Convolutional Neural Networks // Advances in Neural Information Processing Systems. 2012. V. 25.
  12. Squires N.K., Squires K.C., Hillyard S.A. Two Varieties of Long-latency Positive Waves Evoked by Unpredictable Auditory Stimuli in Man // Electroencephalography and Clinical Neurophysiology. 1975. V. 38 (4). P. 387–401.
  13. Schalk G., McFarland D.J., Hinterberger T., Birbaumer N., Wolpaw J.R. BCI2000: A General-purpose Brain-computer Interface (BCI) System // IEEE Transactions on Biomedical Engineering. 2004. V. 51 (6). P. 1034–1043.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».