ГИБРИДНЫЙ МЕТОД АНАЛИЗА ИЗОБРАЖЕНИЙ НА ОСНОВЕ ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА И НЕЧЕТКИХ МНОЖЕСТВ
- Авторы: Аверкин А.Н.1, Волков Е.Н.1, Ярушев С.А.1
-
Учреждения:
- Российский экономический университет им. Г.В. Плеханова
- Выпуск: № 3 (2025)
- Страницы: 99-112
- Раздел: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
- URL: https://ogarev-online.ru/0002-3388/article/view/304411
- DOI: https://doi.org/10.31857/S0002338825030103
- EDN: https://elibrary.ru/bgwqju
- ID: 304411
Цитировать
Аннотация
Об авторах
А. Н. Аверкин
Российский экономический университет им. Г.В. Плеханова
Email: averkin2003@inbox.ru
Москва, Россия
Е. Н. Волков
Российский экономический университет им. Г.В. Плеханова
Email: averkin2003@inbox.ru
Москва, Россия
С. А. Ярушев
Российский экономический университет им. Г.В. Плеханова
Email: averkin2003@inbox.ru
Москва, Россия
Список литературы
- Volkov E.N., Averkin A.N. Explainable Artificial Intelligence in Medical Image Analysis: State of the Art and Prospects // XXVI Intern. Conf. on Soft Computing and Measurements (SCM). IEEE, 2023. P. 134–137. https://doi.org/10.1109/SCM58628.2023.10159033
- Averkin A.N., Volkov E.N., Yarushev S.A. Possibilities of application of neuro-fuzzy networks for ophthalmologic image classification // Pattern Recognition Image Analysis. 2024. V. 34. № 3. P. 610–616. https://doi.org/10.1134/S1054661824700421
- Averkin A.N., Volkov E.N., Yarushev S.A. Explainable artificial intelligence in deep learning neural nets-based digital images analysis //J. Comp. Systems Sci. Int. 2024. V. 63. № 1. P. 175–203. https://doi.org/10.1134/S1064230724700138
- Рыжов А.П. О качестве классификации объектов на основе нечетких правил // Интеллектуальные системы. 2005. Т. 9. С. 253–264.
- Krzywicki T., Brona P., Zbrzezny A.B. et al. A global review of publicly available datasets containing fundus images: characteristics, barriers to access, usability, and generalizability //J. Clin. Med. 2023. V. 12. № 10. P. 3587. https://doi.org/10.3390/jcm12103587
- Jha D., Smedsrud P.H., Riegler M.A. et al. Resunet++: an advanced architecture for medical image segmentation // IEEE Intern. Sympos. Multimedia (ISM). 2019. P. 225–2255.
- Van der Velden B.H.M., Kuijf B.H., Gilhuijs H.J. et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis // Med. Image Analysis. 2022. V. 79. P. 102470. https://doi.org/10.1016/j.media.2022.102470
- Qian J., Li H., Wang J. et al. Recent advances in explainable artificial intelligence for magnetic resonance imaging // Diagnostics. 2023. V. 13. № 9. P. 1571. https://doi.org/10.3390/diagnostics13091571
- Volkov E.N., Averkin A.N. Possibilities of explainable artificial intelligence for glaucoma detection using the LIME method as an example // XXVI Intern. Conf. on Soft Computing and Measurements (SCM). IEEE: Saint-Petersburg, 2023. P. 130–133. https://doi.org/10.1109/SCM58628.2023.10159038
- Saeed W., Omlin C. Explainable Ai (Xai): a systematic meta-survey of current challenges and future opportunities // Knowledge-Based Systems. 2023. V. 263. P. 110273. https://doi.org/10.1016/j.knosys.2023.110273
- Clement T., Kemmerzell N., Abdelaal M. et al. XAIR: a systematic metareview of explainable AI (XAI) aligned to the software development process // Mach. Lear. Knowledge Extraction. 2023. V. 5. № 1. P. 78–108. https://doi.org/10.3390/make5010006
- Selvaraju R.R., Cogswell M., Das A. et al. Grad-cam: visual explanations from deep networks via gradient-based localization // Proc. IEEE Intern. Conf. on Computer Vision. Venice, 2017. P. 618–626.
- Zhou B., Khosla A., Lapedriza A. et al. Learning deep features for discriminative localization // Proc. IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas, 2016. P. 2921–2929.
- Cheng B., Girshick R., Dollar P. et al. Boundary IoU: improving object-centric image segmentation evaluation // Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville, USA. 2021. P. 15334–15342.
- Zhao R., Qian B., Zhang X. et al. Rethinking dice loss for medical image segmentation // IEEE Intern. Conf. on Data Mining (ICDM). Sorrento, Italy. IEEE, 2020. P. 851–860. https://doi.org/10.1109/ICDM50108.2020.00094
- Hehn T., Kooij J., Gavrila D. Fast and compact image segmentation using instance stixels // IEEE Transactions on Intelligent Vehicles. 2021. V. 7. № 1. P. 45–56. https://doi.org/10.1109/TIV.2021.3067223
Дополнительные файлы
