Neural Network Approaches for Recommender Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recommender systems are special algorithms that allow users to receive personalized recommendations on topics that interest them. Systems of this kind are widely used in various fields, for example, in e-commerce, provider services, social networks, etc. Together with classical approaches, neural networks have also become popular in recommender systems in recent years, which are gradually replacing traditional methods of collaborative filtering and content-based algorithms. However, neural networks require large computing resources, which often raises questions on whether an increase in quality will be justified and whether there be one at all. The neural network approach in recommender systems—the self-attentive sequential recommendation (SASRec) transformer model from Microsoft Recommenders—is studied and compared with the classic algorithm, the LightFM hybrid model. For training and validation, the data taken from a housing search application are used. It is proposed to use the hit rate as the main metric for comparison. The results of the experiments will help to understand which algorithms have higher accuracy in terms of predictions and recommendations. As an additional part, the clustering of user and object embeddings is considered.

About the authors

M. A. Zharova

Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia

Email: zharova.ma@phystech.edu
Россия, Долгопрудный

V. I. Tsurkov

Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia

Author for correspondence.
Email: v.tsurkov@frccsc.ru
Россия, Москва

References

  1. Kang W.-Ch., McAuley J. Self-Attentive Sequential Recommendation // IEEE Intern. Conf. on Data Mining (ICDM). Singapore, 2018. P. 197–206.
  2. Имплементация модели SASRec на Python // GitHub. Microsoft recommenders : webcite https://github.com/microsoft/recommenders/tree/main/recommenders/models/sasrec (accessed: 22.04.2023).
  3. Kula M. Metadata Embeddings for User and Item Cold-start Recommendations // Proc. 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th ACM Conf. on Recommender Systems (RecSys). Vienna, Austria, 2015. P. 14–21.
  4. LightFM Documentation // LYST’s Engineering Blog : webcite https://making.lyst.com/lightfm/docs/home.html (accessed: 20.04.2023).
  5. Sineva I.S., Denisov V.Y., Galinova V.D. Building Recommender System for Media with High Content Update Rate // IEEE Intern. Conf. Quality Management, Transport and Information Security, Information Technologies. St. Petersburg, Russia, 2018. P. 385.
  6. Sudasinghe P. G. Enhancing Book Recommendation with the use of Reviews : Master’s Degree Programmes. Colombo, 2019. 54 p.
  7. Manotumruksa J., Yilmaz E. Sequential-Based Adversarial Optimisation for Personalised Top-N Item Recommendation // Proc. 43rd Intern. ACM SIGIR Conf. on Research and Development in Information Retrieval. Xi’an, China, 2020. P. 2045–2048.
  8. Tenney I., Das D., Pavlick E. BERT Rediscovers the Classical NLP Pipeline // Proc. 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy, 2019. P. 4593–4601.
  9. Bi J., Zhu Z., Meng Q. Transformer in Computer Vision // IEEE Intern. Conf. on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). Fuzhou, China, 2021. P. 178–188.
  10. Han K., Wang Y., Chen H., Chen X., Guo J., Liu Z., Tang Y., Xiao A., Xu C., Xu Y., Yang Z., Zhang Y., Tao D. A Survey on Vision Transformer // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. V. 45. № 1. P. 87–110.
  11. Schafer J.B., Frankowski D., Herlocker J., Sen Sh. Collaborative Filtering Recommender Systems // The Adaptive Web: Methods and Strategies of Web Personalization. Berlin, Germany, 2007. P. 291–324.
  12. Rosenthal E. Learning to Rank Sketchfab Models with LightFM https://www.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/ (accessed: 20.04.2023).
  13. Patoulia A.A., Kiourtis A., Mavrogiorgou A., Kyriazis D. A Comparative Study of Collaborative Filtering in Product Recommendation // Emerging Science Journal. 2023. V. 7. № 1. 15 p.
  14. Polignano M., de Gemmis M., Semeraro G. Comparing Transformer-based NER approaches for analysing textual medical diagnoses // Proc. Working Notes of CLEF. Bucharest, Romania, 2021. V. 2936. P. 818–833.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (132KB)
3.

Download (54KB)
4.

Download (136KB)
5.

Download (1MB)
6.

Download (238KB)
7.

Download (814KB)
8.

Download (828KB)
9.

Download (844KB)

Copyright (c) 2023 М.А. Жарова, В.И. Цурков

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».