Synthesis of Parameters of Proportionally-Integral and Proportionally-Integral-Differential Controllers for Stationary Linear Objects with Nonzero Initial Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of the synthesis of proportional-integrating (PI) and proportional-integral-differentiating (PID) controllers in a nonstandard formulation is considered. For a linear one-dimensional control object with nonzero initial conditions, it is required to find a controller that is optimal in the sense of a quadratic functional of the state of the object with a regularization additive in control. The synthesis procedure is a solution of the corresponding quadratic optimization problem using a method similar to the conjugate gradient method (the direction at each step is calculated by the conjugate gradient method, and the step length is calculated by the Armijo rule). Numerical examples illustrate the effectiveness of the proposed algorithm in the synthesis of controllers for models of control objects that are common in practice.

About the authors

D. V. Shatov

Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia

Author for correspondence.
Email: dvshatov@gmail.com
Россия, Москва; Россия, Долгопрудный

References

  1. Maxwell J.C. On Governors // Proceedings of the Royal Society of London. 1868. V. 16. P. 270–283.
  2. Айзерман М.А. Краткий очерк становления и развития классической теории регулирования и управления // АиТ. 1993. № 7. С. 6–18.
  3. Ziegler J.G., Nichols N.B. Optimum Settings for Automatic Controllers // Transactions of ASME. 1942. V. 64. P. 759–768.
  4. Åström K.J., Hägglund T. Advanced PID Control. NC: ISA, 2006. 460 p.
  5. Visioli A. Practical PID Control. London: Springer-Verlag, 2006. 310 p.
  6. Wang L. PID Control System Design and Automatic Tuning using MATLAB/Simulink. Wiley-IEEE Press, 2020. 368 p.
  7. O’Dwyer A. Handbook of PI and PID Controller Tuning Rules: 3rd edition. London: Imperial College Press, 2009. 608 p.
  8. Александров А.Г., Паленов М.В. Состояние и перспективы развития адаптивных ПИД-регуляторов // АиТ. 2014. № 2. С. 16–30.
  9. Podlubny I. Fractional-order Systems and -controllers // IEEE Transactions on Automatic Control. 1999. V. 44. №. 1. P. 208–214.
  10. Hast M., Åström K.J., Bernhardsson B., Boyd S. PID Design by Convex-Concave Optimization // Proc. Europ. Control Conf. (ECC-2013). Zurich, Switzerland, 2013. P. 4460–4465.
  11. Han S., Keel L.H., Bhattacharyya S.P. PID Controller Design with an Criterion // IFAC PapersOnLine. 2018. V. 51. №. 4. P. 400–405.
  12. Wang Q.-G., Ye Z., Cai W.-J., Hang C.-C. PID Control for Multivariable Processes. Berlin: Springer-Verlag, 2008. 273 p.
  13. Boyd S., Hast M., Åström K.J. MIMO PID Tuning via Iterated LMI Restriction // Intern. J. Robust and Nonlinear Control. 2016. V. 26. P. 1718–1731.
  14. Kwakernaak H., Sivan R. Linear Optimal Control Systems. First Edition. London: Wiley-Interscience, 1972. 575 p.
  15. Anderson B.D.O., Moore J.B. Optimal Control. Linear Quadratic Methods. New Jersey: Prentice-Hall, 1989. 380 p.
  16. Fatkhullin I., Polyak B. Optimizing Static Linear Feedback: Gradient Method // SIAM J. on Control and Optimization. 2021. V. 59. № 51. P. 3887–3911.
  17. Поляк Б.Т., Хлебников М.В. Новые критерии настройки ПИД-регуляторов // АиТ. 2022. № 11.
  18. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983. 384 с.
  19. Armijo L. Minimization of Functions Having Lipschitz Continuous First Partial Derivatives // Pacific J. Mathematics. 1966. V. 16. № 1. P. 1–3.
  20. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях: Техника линейных матричных неравенств. М.: ЛЕНАНД, 2014. 560 с.
  21. Ким Д.П. Теория автоматического управления. Т. 2. Многомерные, нелинейные, оптимальные и адаптивные системы. М.: Физматлит, 2004. 464 с.
  22. Åström K.J., Hägglund T. Benchmark Systems for PID Control // IFAC Proceedings Volumes. 2000. V. 33. №. 4. P. 165–166.
  23. Åström K.J. Limitations on Control System Performance // European Journal of Control. 2000. V. 6. Iss.1. P. 2–20.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (430KB)

Copyright (c) 2023 Д.В. Шатов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».