Laser Amorphization of a Crystalline Phase in the Bulk of a Thermally Stable Lithium Aluminosilicate Glass-Ceramic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents results of femtosecond laser micromachining of a transparent glass-ceramic in the Li2O–Al2O3–SiO2 system with a near-zero linear thermal expansion coefficient in the thermal and athermal regimes. Electron microscopy and electron diffraction data confirm complete amorphization of nanocrystals of β-eucryptite-like solid solutions under the effect of laser pulses. Using quantitative phase microscopy, we have evaluated refractive index changes in individual laser-written tracks. In the athermal regime at a pulse repetition rate of 10 kHz, complete glass-ceramic amorphization leads to a decrease in the refractive index of the material (Δn = −0.0035) in the laser treatment region, which opens up the possibility of using direct laser writing of channel waveguides in a thermally stable glass-ceramic matrix.

About the authors

A. S. Naumov

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

S. V. Lotarev

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

A. S. Lipatiev

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

G. Yu. Shakhgildyan

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

S. S. Fedotov

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

E. V. Lopatina

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

I. A. Karateev

Kurchatov Institute National Research Center, 123098, Moscow, Russia

Email: sigaev.v.n@muctr.ru
Россия, 123098, Москва, пл. Академика Курчатова, 1

V. N. Sigaev

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Author for correspondence.
Email: sigaev.v.n@muctr.ru
Россия, 125047, Москва, Миусская пл., 9

References

  1. Low Thermal Expansion Glass Ceramics / Eds. Bach H., Krause D. Berlin, Heidelberg: Springer, 2005. P. 121–235. https://doi.org/10.1007/3-540-28245-9_3
  2. Hartmann P., Jedamzik R., Carré A., Krieg J., Westerhoff T. Glass ceramic ZERODUR®: Even Closer to Zero Thermal Expansion: a Review. Part 1 // JATIS. 2021. V. 7. № 2. P. 020901. https://doi.org/10.1117/1.JATIS.7.2.020901
  3. Mitra I. ZERODUR: a Glass-Ceramic Material Enabling Optical Technologies // Opt. Mater. Express. 2022. V. 12. № 9. P. 3563–3576. https://doi.org/10.1364/OME.460265
  4. Venkateswaran C., Sreemoolanadhan H., Vaish R. Lithium Aluminosilicate (LAS) Glass-Ceramics: a Review of Recent Progress // Int. Mater. Rev. 2022. V. 67. № 6. P. 620–657. https://doi.org/10.1080/09506608.2021.1994108
  5. Passaro V.M., Cuccovillo A., Vaiani L., De Carlo M., Campanella C.E. Gyroscope Technology and Applications: A Review in the Industrial Perspective // Sensors. 2017. V. 17 № 1. P. 2284. https://doi.org/10.3390/s17102284
  6. Tan D., Zhang B., Qiu J. Ultrafast Laser Direct Writing in Glass: Thermal Accumulation Engineering and Applications // Laser Photonics Rev. 2021. V. 15. № 9. P. 2000455. https://doi.org/10.1002/lpor.202000455
  7. Bhardwaj V.R., Simova E., Corkum P.B., Rayner D.M. Femtosecond Laser-Induced Refractive Index Modification in Multicomponent Glasses // J. Appl. Phys. 2005. V. 97. № 8. P. 083102. https://doi.org/10.1063/1.1876578
  8. Lipatiev A., Fedotov S., Lotarev S., Naumov A., Lipateva T., Savinkov V., Shakhgildyan G., Sigaev V. Direct Laser Writing of Depressed-Cladding Waveguides in Extremely Low Expansion Lithium Aluminosilicate Glass-Ceramics // Opt. Laser Technol. 2021. V. 138. P. 106846. https://doi.org/10.1016/j.optlastec.2020.106846
  9. Guan J. Femtosecond-Laser-Written Integrated Photonics in Bulk Glass-Ceramics Zerodur // Ceram. Int. 2021. V. 47. № 7. P. 10189–10192. https://doi.org/10.1016/j.ceramint.2020.12.099
  10. Наумов А.С., Лотарев С.В., Липатьев А.С., Федотов С.С., Савинков В.И., Сигаев В.Н. Способ лазерной записи интегральных волноводов: Пат. РФ № 2781465 С1. 2022.
  11. Lotarev S.V., Lipatiev A.S., Lipateva T.O., Fedotov S.S., Naumov A.S., Moiseev I.A., Sigaev V.N. Ultrafast-Laser Vitrification of Laser-Written Crystalline Tracks in Oxide Glasses // J. Non-Cryst. Solids. 2019. V. 516. P. 1–8. https://doi.org/10.1016/j.jnoncrysol.2019.04.027
  12. Сигаев В.Н., Савинков В.И., Шахгильдян Г.Ю., Наумов А.С., Лотарев С.В., Клименко Н.Н., Голубев Н.В., Пресняков М.Ю. О возможности прецизионного управления температурным коэффициентом линейного расширения прозрачных литиево-алюмосиликатных ситаллов вблизи нулевых значений // Стекло и керамика. 2019. № 12. С. 11–16.
  13. Сигаев В.Н., Липатьев А.С., Федотов С.C., Лотарев С.В., Шахгильдян Г.Ю., Наумов А.С., Савинков В.И. Фемтосекундное лазерное модифицирование прозрачного литиево-алюмосиликатного ситалла и исходного стекла, содержащего сурьму // Стекло и керамика. 2019. № 10. С. 9–13.
  14. Choudhury D., Macdonald J.R., Kar A.K. Ultrafast Laser Inscription: Perspectives on Future Integrated Applications // Laser Photonics Rev. 2014. V. 8. № 6. P. 827–846. https://doi.org/10.1002/lpor.201300195
  15. Alekseeva I., Dymshits O., Ermakov V., Zhilin A., Petrov V., Tsenter M. Raman Spectroscopy Quantifying the Composition of Stuffed β-Quartz Derivative Phases in Lithium Aluminosilicate Glass-Ceramics // J. Non-Cryst. Solids. 2008. V. 354. № 45–46. P. 4932–4939. https://doi.org/10.1016/j.jnoncrysol.2008.07.016
  16. Eaton S.M., Zhang H., Herman P.R., Yoshino F., Shah L., Bovatsek J., Arai A.Y. Heat Accumulation Effects in Femtosecond Laser-Written Waveguides with Variable Repetition Rate // Opt. Express. 2018. V. 13. P. 4708–4716. https://doi.org/10.1364/OPEX.13.004708

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (527KB)
4.

Download (2MB)
5.

Download (2MB)

Copyright (c) 2023 А.С. Наумов, С.В. Лотарев, А.С. Липатьев, Г.Ю. Шахгильдян, С.С. Федотов, Е.В. Лопатина, И.А. Каратеев, В.Н. Сигаев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».