[]
- 作者: Vorotyntsev A.V.1, Markov A.N.1, Dokin E.S.1, Kapinos A.A.1, Emelyanov A.V.1, Grachev P.P.1, Medov V.A.1, Petukhov A.N.1
-
隶属关系:
- Nizhny Novgorod State University named after N.I. Lobachevsky
- 期: 卷 61, 编号 5–6 (2025)
- 页面: 312-316
- 栏目: Articles
- URL: https://ogarev-online.ru/0002-337X/article/view/308713
- DOI: https://doi.org/10.31857/S0002337X25030067
- EDN: https://elibrary.ru/lblxdb
- ID: 308713
如何引用文章
详细
作者简介
A. Vorotyntsev
Nizhny Novgorod State University named after N.I. Lobachevsky
Email: an.vorotyntsev@gmail.com
Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Markov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
E. Dokin
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Kapinos
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Emelyanov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
P. Grachev
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
V. Medov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Petukhov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
参考
- Dewar J. The Physical and Chemical Properties of Iron Carbonyl // Proс. R. Soc. L. 1905. V. 76. № 513. P.558–577. https://doi.org/10.1098/rspa.1905.0063
- Gorodkin S.R., James R.O., Kordonski W.I. Magnetic Properties of Carbonyl Iron Particles in Magnetorheological Fluids // J. Phys. Conf. Ser. 2009. V. 149. 012051. https://doi.org/10.1088/1742-6596/149/1/012051
- Milecki A., Hauke M. Application of Magnetorheological Fluid in Industrial Shock Absorbers // Mech. Syst. Signal Process. 2012. V. 28. P.528–541. https://doi.org/10.1016/j.ymssp.2011.11.008
- Wei D., Darcel C. Iron Catalysis in Reduction and Hydrometalation Reactions // Chem. Rev. 2019. V. 119. № 4. P.2550–2610. https://doi.org/10.1021/acs.chemrev.8b00372
- Gao S., Liu Y., Shao Y., Jiang D., Duan Q. Iron Carbonyl Compounds with Aromatic Dithiolate Bridges as Organometallic Mimics of [FeFe] Hydrogenases // Coord. Chem. Rev. 2020. V. 402. 213081. https://doi.org/10.1016/j.ccr.2019.213081
- Watt J., Bleier G.C., Austin M.J., Ivanov S.A., Huber D.L. Non-volatile Iron Carbonyls as Versatile Precursors for the Synthesis of Iron-Containing Nanoparticles // Nanoscale. 2017. V. 9. № 20. P.6632–6637. https://doi.org/10.1039/c7nr01028a
- Yan H., Song X., Wang Y. Study on Wave Absorption Properties of Carbonyl Iron and SiO2 Coated Carbonyl Iron Particles // AIP Adv. 2018. V. 8. № 6. 065322. https://doi.org/10.1063/1.5034496
- Chen D., Zhuang D., Zhao Y., Xie Q., Zhu J. Reaction Mechanisms of Iron(III) Catalyzed Carbonyl-Olefin Metatheses in 2,5- and 3,5-Hexadienals: Significant Substituent and Aromaticity Effects // Org. Chem. Front. 2019. V. 6. № 24. P.3917–3924. https://doi.org/10.1039/c9qo01008d
- Mohamad N., Mazlan S.A., Choi S.B., Imaduddin F., Abdul Aziz S.A. The Field-Dependent Viscoelastic and Transient Responses of Plate-Like Carbonyl Iron Particle Based Magnetorheological Greases // J. Intell. Mater. Syst. Struct. 2019. V. 30. № 5. P.788–797. https://doi.org/10.1177/1045389X19828504
- Mond L., Langer C. XCIII. — On Iron Carbonyls // J. Chem. Soc. 1891. V. 59. P.1090–1093. https://doi.org/10.1039/CT8915901090
- Wildermuth E., Stark H., Friendrich G., Ebenhoch F.L., Kuhborth B., Silver J., Rituper R. Iron Compounds // UEIC. 2000. V. 20. P.41–59. https://doi.org/10.1002/14356007.a14_591
- Hieber W., Geisenberger O. Über Metallcarbonyle. XLVII. Über den Einfluß von Chalkogenen auf die Entstehung von Eisenpentacarbonyl aus den Komponenten // Z. Anorg. Chem. 1950. V. 262. № 1–5. P.332–336. https://doi.org/10.1002/zaac.19502620104
- Banks R.L., Bailey G.C. Olefin Disproportionation. A New Catalytic Process // I&EC Prod. Res. Dev. 1964. V. 3. № 3. P.170–173. https://doi.org/10.1021/i360011a002
- Tang M., Zhang H., Her T.H. Self-Assembly of Tunable and Highly Uniform Tungsten Nanogratings Induced by a Femtosecond Laser with Nanojoule Energy // Nanotechnology. 2007. V. 18. № 48. 485304. https://doi.org/10.1088/0957-4484/18/48/485304
- Xiao C., Liu B., He X. Photolytic Deposition of Tungsten Hexacarbonyl: CVD of W-based Films with the Assistant of UV Beam in Ultra-High Vacuum Condition // Mater. Res. Express. 2019. V. 6. № 8. 086453. https://doi.org/ 10.1088/2053-1591/ab24fc
- Bruno S.M., Valente A.A., Gonçalves I.S., Pillinger M. Group 6 Carbonyl Complexes of N, O, P-ligands as Precursors of High-Valent Metal-Oxo Catalysts for Olefin Epoxidation // Coord. Chem. Rev. 2023. V. 478. 214983. https://doi.org/10.1016/j.ccr.2022.214983
补充文件
