Структура РФЭС магнетита

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучена сложная структура рентгеновских фотоэлектронных спектров (РФЭС) валентных и остовных электронов геологического образца магнетита (Fe₃O₄, Свердловская область, Россия), содержащего ионы Fe²⁺ и Fe³⁺ и примеси (Mg, Al, Si, Ti и др.). Показано, что РФЭС магнетита отражают суперпозицию спектров ионов Fe²⁺ (3d⁶) и Fe³⁺ (3d⁵) в высокоспиновых состояниях. Оценены энергии связи остовных Fe 3p-, 3s- и 2p-электронов различных ионов железа. Экспериментальный спектр Fe 3s-электронов магнетита состоит из двух дублетов c расщеплением 5.2 (Fe²⁺) и 6.5 (Fe³⁺) эВ. Эти величины согласуются с результатами теоретических расчетов для атома железа, выполненных методом взаимодействия конфигураций конечных состояний: 4.0 эВ для Fe²⁺(3d⁶) и 6.8 эВ для 3d⁵ (Fe³⁺).

Full Text

Restricted Access

About the authors

К. И. Маслаков

Московский государственный университет им. М.В. Ломоносова; Национальный исследовательский центр «Курчатовский институт»

Email: antonxray@yandex.ru
Russian Federation, Химический факультет, Ленинские горы, 1, Москва, 199991; пл. Курчатова, 1, Москва, 123182

Ю. A. Тетерин

Московский государственный университет им. М.В. Ломоносова; Национальный исследовательский центр «Курчатовский институт»

Email: antonxray@yandex.ru
Russian Federation, Химический факультет, Ленинские горы, 1, Москва, 199991; пл. Курчатова, 1, Москва, 123182

A. В. Сафонов

Институт физической химии и электрохимии имени А.Н. Фрумкина Российской академии наук

Email: antonxray@yandex.ru
Russian Federation, Ленинский пр., 31, корп. 4, Москва, 119071

В. Г. Яржемский

Национальный исследовательский центр «Курчатовский институт»; Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: antonxray@yandex.ru
Russian Federation, пл. Курчатова, 1, Москва, 123182; Ленинский пр., 31, Москва, 119991

A. Ю. Тетерин

Национальный исследовательский центр «Курчатовский институт»

Author for correspondence.
Email: antonxray@yandex.ru
Russian Federation, пл. Курчатова, 1, Москва, 123182

Г. Д. Артемьев

Институт физической химии и электрохимии имени А.Н. Фрумкина Российской академии наук

Email: antonxray@yandex.ru
Russian Federation, Ленинский пр., 31, корп. 4, Москва, 119071

И. И. Зиньковская

Объединенный институт ядерных исследований

Email: antonxray@yandex.ru
Russian Federation, ул. Жолио Кюри, 6, Дубна, Московская обл., 141980

References

  1. McBeth J.M., Lloyd J.R., Law G.T.W., Livens F.R., Burke I.T., Morris K. Redox Interactions of Technetium with Iron-Bearing Minerals // Miner. Mag. 2011. V. 75. № 4. P. 2419–2430. https://doi.org/10.1180/minmag.2011.075.4.2419
  2. Duff M.C., Coughlin J.U., Hunter D.B. Uranium Co-precipitation with Iron Oxide Minerals // Geochim. Cosmochim. Acta. 2002. V. 66. № 20. P. 3533–3547. https://doi.org/10.1016/S0016- 7037(02)00953-5
  3. Das D., Sureshkumar M., Koley S., Mithal N., Pillai C. Sorption of Uranium on Magnetite Nanoparticles // J. Radioanal. Nucl. Chem. 2010. V. 285. № 3. P. 447–454. https://doi. org/10.1007/s10967-010-0627-0
  4. Lukens W.W., Saslow S.A. Facile Incorporation of Technetium into Magnetite, Magnesioferrite, and Hematite by Formation of Ferrous Nitrate in situ: Precursors to Iron Oxide Nuclear Waste Forms // Dalton Trans. 2018. V. 47. № 30. P. 10229–10239. https://doi.org/10.1039/c8dt01356j
  5. Smith F.N., Um W., Taylor C.D., Kim D.S., Schweiger M.J., Kruger A.A. Computational Investigation of Technetium (IV) Incorporation into Inverse Spinels: Magnetite (Fe3O4) and Trevorite (NiFe2O4) // Environ. Sci. Technol. 2016. V. 50. № 10. P. 5216–5224. https://doi. org/10.1021/acs.est.6b00200
  6. Сафонов А.В., Андрющенко Н.Д., Иванов П.В., Болдырев К.А., Бабич Т.Л., Герман К.Э., За- харова Е.В. Биогенные факторы иммобили- зации радионуклидов на песчаных породах верхних водоносных горизонтов // Радио- химия. 2019. Т. 61. № 1. С. 63–71. https://doi. org/10.1134/S0033831119010106
  7. Boguslavsky A.E., Gaskova O.L., Naymushina O.S., Popova N.M., Safonov A.V. Environmental Monitoring of Low-Level Radioactive Waste Disposal in Electrochemical Plant Facilities in Zelenogorsk, Russia // Appl. Geochem. 2020. V. 119. Р. 104598. https://doi.org/10.1016/j. apgeochem.2020.104598
  8. Safonov A.V., Boguslavsky A.E., Gaskova O.L., Boldyrev K.A., Shvartseva O.S., Khvashchevs- kaya A.A., Popova, N.M. Biogeochemical Mode- lling of Uranium Immobilization and Aquifer Remediation Strategies near NCCP Sludge Storage Facilities // Appl. Sci. 2021. V. 11. № 6. Р. 2875. https://doi.org/10.3390/app11062875
  9. Mills P., Sullivan J.L. A Study of the Core Level Electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy // J. Phys. D: Appl. Phys. 1983. V. 16. P. 723–732. https:// doi.org/10.1088/0022-3727/16/5/005
  10. Zimmermann R., Steiner P., Claessen R., Reinert F., Hufner S., Blaha P., Dufek P. Electronic Structure of 3d-Transition-Metal Oxides: on-site Coulomb Repulsion Versus Covalency // J. Phys.: Condens. Matter. 1999. V. 11. P. 1657–1682. https://doi.org/10.1088/0953-8984/11/7/002
  11. Miedemaa P.S., Borgatti F., Offi F., Panaccione G., de Groota F.M.F. Iron 1s X-Ray Photoemission of Fe2O3 // J. Electron. Spectrosc. Relat. Phenom. 2015. V. 203. P. 8–13. https://doi.org/10.1016/j. elspec.2015.05.003
  12. Bagus P.S., Nelin C.J., Brundle C.R., Crist B.V., Lahiri N., Rosso K.M. Combined Multiplet Theory and Experiment for the Fe 2p and 3p XPS of FeO and Fe2O3 // J. Chem. Phys. 2021. V. 154.
  13. Р. 094709. https://doi.org/10.1063/5.0039765.13. Тетерин Ю.А., Перфильев Ю.Д., Маслаков К.И., Яржемский В.Г., Тетерин А.Ю., Ива- нов К.Е., Дедушенко С.К. Структура спектров РФЭС K2FeO4 // ЖСХ. 2022. Т. 63. № 10. Р. 99693. https://doi.org/10.29902/JSC_id99693
  14. Van der Heide H., Hemmel R., Van Bruggen C.F., Haas C. X-Ray Photoelectron Spectra of 3d Transition Metal Pyrites // J. Solid State Chem. 1980. V. 33. P. 17–25. https://doi. org/10.1016/0022-4596(80)90543-5
  15. Wendin G. Breakdown of One-Electron Pictures in Photoelectron Spectra // Struct. Bond. 1981. V. 45. P. 1–125. https://doi.org/10.1007/ BFb0111504
  16. Яржемский В.Г., Тетерин Ю.А., Пресняков И.А., Маслаков К.И., Тетерин А.Ю., Ива- нов К.Е. Многоэлектронные эффекты в Co3s рентгеновских фотоэлектронных спектрах диамагнитного ScCoO3 и парамагнитно- го BiCoO3 кобальтитов // Письма в ЖЭТФ. 2020. Т. 111. № 8. С. 487–493. https://doi. org/10.31857/S1234567820080030
  17. Pavlov S.S., Dmitriev A.Y., Frontasyeva M.V. Automation System for Neutron Activation Analysis at the Reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia // J. Radioanal. Nucl. Chem. 2016. V. 309. P. 27–38. https://doi. org/10.1007/s10967-016-4864-8
  18. Shirley D.A. High-Resolution X-Ray Photo- emission Spectrum of the Valence Bands of Gold // Phys. Rev. B. 1972. V. 5. P. 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709
  19. Панов А.П. Пакет программ обработки спек- тров SPRO и язык программирования SL: Препринт. М.: Ин-т атом. энергии, ИАЭ- 6019/15, 1997. 31 с.
  20. Sosulnikov M.I., Teterin Yu.A. X-Ray Photoelectron Studies of Ca, Sr and Ba and Their Oxides and Carbonates // J. Electron. Spectrosc. Relat. Phenom. 1992. V. 59. P. 111–126. https:// doi.org/10.1016/0368-2048(92)85002-O
  21. Нефедов В.И. Рентгеноэлектронная спектро- скопия химических соединений (справоч- ник). М.: Химия, 1984. 256 с.
  22. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds // Surf. Interface Anal. 2004. V. 36. P. 1564–1574. https://doi.org/10.1002/sia.1984
  23. Descostes M., Mercier F., Thromat N., Beaucaire C., Gautier-Soyer M. Use of XPS in the Determination of Chemical Environment and Oxidation State of Iron and Sulfur Samples: Constitution of a Data Basis in Binding Energies for Fe and S Reference Compounds and Applications to the Evidence of Surface Species of an Oxidized Pyrite in a Carbonate Medium // Appl. Surf. Sci. 2000. V. 165. P. 288–302. https:// doi.org/10.1016/S0169-4332(00)00443-8
  24. Van Vleck J.H. The Dirac Vector Model in Complex Spectra // Phys. Rev. 1934. V. 45. № 5. P. 405–419. https://doi.org/10.1103/ PhysRev.45.405
  25. Yarzhemsky V.G., Teterin Yu.A. Satellite Excitations and Final State Interactions in Atomic Photoionization // Atoms. 2022. V. 10. № 3. P. 73 (13 p). https://doi.org/10.3390/atoms10030073
  26. Huang K.N., Aojogi M., Chen M.N., Graseman B., Mark H. Neutral-atom Electron Binding Energies from Relaxed-Orbital Relativistic Hartree-Fock- Slater Calculations 2 ≤ Z ≤ 106 // Atom. Data Nucl. Data Tables. 1976. V. 18. P. 243–291. https://doi.org/10.1016/0092-640X(76)90027-9
  27. Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. Photoionization cross Sections and Photoelectron Angular Distributions for x-Ray Line Energies in the Range 0.132–4.509 keV Targets: 1 ≤ Z ≤ 100 // Atom Data Nucl. Data Tables. 1979. V. 23. P. 443–505. https://doi. org/10.1016/0092-640X(79)90027-5
  28. Kochur A.G., Ivanova T.M., Shchukarev A.V., Linko R.V., Sidorov A.A., Kiskin M.A., Novotortsev V.M., Eremenko I.L. X-Ray Photoelectron Fe3s and Fe3p Spectra of Polynuclear Trimethylacetate Iron Complexes // J. Electron. Spectrosc. Relat. Phenom. 2010. V. 180. № 1–3. P. 21–26. https://doi.org/10.1016/j.elspec.2010.03.011
  29. Водяницкий Ю.Н. Природные и техногенные соединения тяжелых металлов в почвах // Почвоведение. 2014. Т. 4. С.420–432. https:// doi.org/10.7868/S0032180X14040108
  30. Sasaki S. Radial Distribution of Electron Density in Magnetite, Fe3O4 // Acta Crystallogr. Sect. B. 1997. V. B53. P. 762–766. https://doi. org/10.1107/S0108768197007842
  31. Jahanbagloo J.C., Zoltai T. The Crystal Structure of a Hexagonal Al-Serpentine // Am. Mineral. 1968. V. 53. P. 14–24.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental diffraction pattern of a magnetite sample (the peak at 44.5° refers to metallic iron, which apparently got into the sample during sampling [29]) (a); theoretical spectrum of magnetite [30] (b); theoretical spectrum of serpentine [31] (c).

Download (156KB)
3. Fig. 2. Survey spectrum of Fe₃O₄ after purification with Ar⁺ ions.

Download (56KB)
4. Fig. 3. Low-energy electron XPS of Fe₃O₄: a – original sample, b – after cleaning with Ar⁺ ions.

Download (119KB)
5. Fig. 4. XPS of O 1s-electrons of Fe₃O₄: a – initial sample, b – after cleaning with Ar⁺ ions.

Download (122KB)
6. Fig. 5. XPS of Fe 2p-electrons of magnetite: a – original sample, b – after cleaning with Ar⁺ ions.

Download (119KB)
7. Fig. 6. XPS of Fe 3p-electrons of magnetite: a – original sample, b – after cleaning with Ar⁺ ions.

Download (125KB)
8. Fig. 7. XPS of Fe 3s electrons of magnetite: a – original sample, b – after cleaning the surface with Ar⁺ ions.

Download (86KB)
9. Fig. 8. Splitting of the Fe3s⁻¹ level after photoionization: Fe³⁺(3s⁻¹3d⁵) – 6.8 eV (a) and Fe²⁺(3s⁻¹3d⁶) – 4.0 eV (b). In each of the fragments of the figure, only the multiplet splitting due to the interaction of 3s⁻¹ with the 3dⁿ shell is shown on the left; in the middle – taking into account the multiplet splitting of the Fe3s⁻¹ level and the configuration interaction with the excited states of Fe3p⁻²3dn⁺¹; on the right are the excited final states due to the dynamic effect, the influence of which on the structure of the splitting of the Fe3s⁻¹ level was taken into account together with the multiplet splitting (configuration interaction).

Download (108KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».