Аналитический контроль процесса получения чистой сурьмы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для оперативного аналитического контроля технологии получения чистой сурьмы разработана методика многоэлементной атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой (АЭС ИСП). Выбраны аналитические линии определяемых элементов с наименьшими спектральными влияниями. Изучено влияние концентрации матричного компонента (от 5 до 40 г/л) на аналитические сигналы элементов-примесей. Изменения условий возбуждения в плазме при разном содержании сурьмы в растворе и разной мощности ИСП оценивали с помощью комплексного показателя жесткости. Показатель жесткости рассчитывали по отношению интенсивностей линий магния–ионной к атомной. Установили, что 40 г/л сурьмы в анализируемом растворе снижает показатель жесткости до 5%. Правильность разработанной методики подтверждена экспериментом “введено–найдено” и сравнением с результатами, полученными независимым методом. Предложенная методика анализа сурьмы позволяет определять 56 элементов-примесей с пределами обнаружения n × 10–7n × 10–4 мас. %.

Об авторах

А. Р. Цыганкова

Институт неорганической химии им. А.В. Николаева СО Российской академии наук; Новосибирский национальный исследовательский государственный университет

Автор, ответственный за переписку.
Email: alphiya@yandex.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3; Россия, 630090, Новосибирск, ул. Пирогова, 2

Т. Я. Гусельникова

Институт неорганической химии им. А.В. Николаева СО Российской академии наук; Новосибирский национальный исследовательский государственный университет

Email: alphiya@yandex.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3; Россия, 630090, Новосибирск, ул. Пирогова, 2

Н. И. Петрова

Институт неорганической химии им. А.В. Николаева СО Российской академии наук

Email: alphiya@yandex.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3

Ф. В. Яцунов

ООО “СХИМТ”

Email: alphiya@yandex.ru
Россия, 633004, Бердск, ул. Химзаводская, 11/26

Список литературы

  1. Кренев В.А., Дергачева Н.П., Фомичев С.В. Сурьма: ресурсы, области применения и мировой рынок // Хим. технология. 2014. Т. 15. № 11. С. 670–674.
  2. Михайлова М.П., Моисеев К.Д., Яковлев Ю.П. Открытие полупроводников AIIIBV: физические свойства и применение (Обзор) // Физика и техника полупроводников. 2019. Т. 53. № 3. С. 291–308. https://doi.org/10.21883/FTP.2019.03.47278.8998
  3. Kazakova O., Gallop J.C., See P., Cox D., Perkins G.K., Moore J.D., Cohen L.F. Detection of a Micron-Sized Magnetic Particle Using InSb Hall Sensor // IEEE Trans. Magn. 2009. V. 45. № 10. P. 4499–4502. https://doi.org/10.1109/TMAG.2009.2025513
  4. Kroemer H. The 6.1 A Family (InAs, GaSb, AlSb) and its Heterostructures: a Selective Review // Physica E: Low-dimensional Syst. Nanostruct. 2004. V. 20. № 3–4. P. 196–203. https://doi.org/10.1016/j.physe.2003.08.003
  5. Singh Y., Maurya K.K., Singh V.N. A Review on Properties, Applications, and Deposition Techniques of Antimony Selenide // Sol. Energy Mater. Sol. Cells. 2021. V. 230. P. 111223. https://doi.org/10.1016/j.solmat.2021.111223
  6. Luo W., Gaumet J.-J., Mai L.-Q. Antimony-Based Intermetallic Compounds for Lithium-Lon and Sodium-Ion Batteries: Synthesis, Construction and Application // Rare Met. 2017. V. 36. P. 321–338. https://doi.org/10.1007/s12598-017-0899-4
  7. Zybala R., Mars K., Mikula A., Boguslawski J., Sobon G., Sotor J., Schmidt M., Kaszyca K., Chmielewski M., Ciupinski L., Pietrzak K. Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications // Arch. Met. Mater. 2017. V. 62. № 2B. P. 1067–1070. https://doi.org/10.1515/amm-2017-0155
  8. ГОСТ 1089–82. Сурьма. Технические условия. Методы анализа. М.: Изд. Стандартов, 2002. 8 с.
  9. Аминов Б., Шеров Х.Д., Одинаев Б., Ганиев И.Н. Рафинирование черновой сурьмы и формование ее слитка во вращающемся контейнере // Докл. Академии наук РТ. 2010. Т. 53. № 10. С. 786–790.
  10. Шеров Х.Д., Аминов Б., Ганиев И.Н. Физико-химические основы получения сурьмы сублимацией ее концентрата // Изв. НАН Республики Таджикистан. 2009. № 2. С. 85–92.
  11. Кондратенко Л.А. Способ получения высокочистого олова: Пат. РФ. 20811961997. 1997. 6 с.
  12. ГОСТ 1367.1–83. Сурьма. Спектральный метод определения примесей без предварительного обогащения. М.: Изд. Стандартов, 2002. 5 с.
  13. Shekhar R., Balarama Krishna M.V., Arunachalam J., Gangadharan S. Analysis of High Purity Antimony by Glow Disharge Quadrupole Mass Spectrometry // At. Spectrosc.-Norwalk Connecticut. 1999. V. 20. P. 25–29.
  14. ГОСТ 1367.11–83. Сурьма. Химико-спектральный метод анализа. М.: Изд. Стандартов, 2002. 5 с.
  15. Чанышева Т.А., Шелпакова И.Р. Химико-атомно-эмиссионный спектральный анализ высокочистой сурьмы // Аналитика и контроль. 1999. № 1. С. 15–20.
  16. Sounderajan S., Kiran Kumar G., Udas A.C., Mukherjee T. In Situ Matrix Volatilization for Trace Element Determination in High Purity Antimony and Antimony Oxide and Education of the Atomization Mechanism by ETAAS // At. Spectrosc. 2013. V. 34. P. 181–190.
  17. Karunasagar M.V.B.K.D., Arunachalam J. Studies on the Determination of Trace Elements in High-purity Sb |Using GFAAS and ICP-QMS // Fresenius J. Anal. Chem. 1999. V. 363. P. 353–358. https://doi.org/10.1007/s002160051202
  18. Шаверина А.В., Цыганкова А.Р., Сапрыкин А.И. Методика ИСП-АЭС анализа кремния с микроволновым разложением и концентрированием // ЖАХ. 2015. Т. 70. № 1. С. 26–29. https://doi.org/10.7868/S004445021501017X
  19. Лундовская О.В., Цыганкова А.Р., Орлов Н.А., Яцунов Ф.В. Аналитическое сопровождение процесса получения теллура Т 000 // Неорган. материалы. 2022. Т. 58. № 9. С. 1024–1032. https://doi.org/10.31857/S0002337X2209010X
  20. Пупышев А.А., Суриков В.Т. Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.
  21. Цыганкова А.Р., Макашова Г.В., Шелпакова И.Р. Зависимость интенсивности спектральных линий элементов от мощности ИСП-плазмы и расхода аргона // МОХА. 2012. Т. 7. № 3. С. 138–142.
  22. Пупышев А.А., Данилова Д.А. Разработка модели теромохимических процессов для метода атомно-эмиссионной спектрометрии с индуктивно связанной плазмой. Ч. 1. Матричные неспектральные помехи // Аналитика и контроль. 2001. № 2. С. 112–136.
  23. Девятых Г.Г., Карпов Ю.А., Осипова Л.И. Выставка-коллекция веществ особой чистоты. М.: Наука, 2003. 236 с.
  24. Лазарев А.И., Харламов И.П., Яковлев П.Я., Яковлева Е.Ф. Справочник химика-аналитика. М.: Металлургия, 1976. 184 с.
  25. Чудинов Э.Г. Атомно-эмиссионный анализ с индукционной плазмой // Итоги науки и техники. Сер. Аналитическая химия. 1990. Т. 2. 251 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (118KB)
3.

Скачать (52KB)
4.

Скачать (144KB)

© А.Р. Цыганкова, Т.Я. Гусельникова, Н.И. Петрова, Ф.В. Яцунов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».